中心簡介 / 同仁通訊錄

生命科學小組


姓名: 陳俊榮( Chun-Jung Chen )
分機: 7330
電子郵件: cjchen@nsrrc.org.tw
學歷:
  • 美國匹茲堡大學結晶學系博士 (1994-1999)
  • 國立清華大學生命科學研究所碩士 (1989-1991)
  • 國立清華大學物理系學士 (1985-1989)
經歷:
  • 國際結晶學聯合會(IUCr)理事會委員 (2022/06~迄今)
  • 國際結晶學聯合會(IUCr)中華民國委員會主席 (2022/06~迄今)
  • 亞洲結晶學學會理事會委員 (2022/06~迄今)
  • 台灣物理學會生物物理及物理生物學部委員暨副召集人 (2022/02~迄今)
  • 台灣結晶學小組召集人 (2021/01~迄今) 
  • 國家同步輻射研究中心副主任 (2018/08-2022/07)
  • 國家同步輻射研究中心科學研究組組長 (2016/07-2018/07)
  • 國家同步輻射研究中心科學研究組組長 (2012/07-2014/06)
  • 國家同步輻射研究中心研究組生命科學小組研究員(2011/01~迄今)
  • 國立陽明交通大學生物科技系合聘教授 (2019/08~)
  • 國立臺灣科技大學應用科技研究所合聘教授 (2019/08~)
  • 國立成功大學生物科技與產業科學系合聘教授 (2011/08~)
  • 國立清華大學物理系合聘教授 (2011/08~)
  • 國家同步輻射研究中心研究組生命科學小組副研究員(2004/01~2010/12)
  • 國立成功大學生物科技所合聘副教授 (2008/08~2011/07)
  • 國立清華大學物理系合聘副教授 (2005/08~2011/07)
  • 國立清華大學生命科學院結構生物學程專任教授 (2004/08~)
  • 國家同步輻射研究中心研究組博士級助研究員(2001/01~2003/12)
  • 國立清華大學物理系合聘助理教授 (2002/08~2005/07)
  • 國立清華大學物理系兼任助理教授 (2001/08~2002/07)
  • 美國喬治亞大學生物化學及分子生物學系博士後研究員(1999/12~2000/10)
負責實驗站:
  • 蛋白質結晶學與結構生物學實驗室
  • TPS 07A
  • SPring-8 BL44XU
研究領域:
  • 研究專長涵括同步輻射蛋白質結晶學、結構生物學、生物物理與生物化學等領域,研究團隊運用生物物理化學、生命科學及結晶學等相關技術與設備,結合本中心和日本SPring-8同步加速器之X光蛋白質結晶學實驗站與國內單晶繞射儀,進行生物巨分子複合物、蛋白質及小分子晶體結構與功能研究。實驗室設有完善分生、生化、生物物理及蛋白質結晶學設備,可以進行蛋白質的純化生產、活性分析、晶體培養、繞射數據收集、結構解析及功能研究。除了蛋白質結晶學外,也利用小角度X光散射(SAXS)、X光吸收細微結構(XAFS)、圓二色光譜(SRCD)、紅外光譜(IR)等重要同步輻射實驗技術,並配合使用先進低溫冷凍電子顯微鏡(cryo-EM),針對生命科學、醫學、農漁業等相關重要蛋白質,研究其結構與功能之關係,提昇目標蛋白質在醫藥學、農漁業及生物科技之應用價值。

    近年與未來的研究主軸著重在各重要細胞膜蛋白質、病毒、蛋白質與核酸作用的結構與功能關係,另外也與生技產業長期合作,進行新醫藥開發研究。科學研究主要可以分為以下幾個方向: (一)針對厭氧菌之代謝過程、電子傳遞鏈、氧氣防禦機制中多種細胞膜蛋白質結構與功能關係進行系統性的探討,以了解厭氧菌在無氧環境中的生命作用機制,有助於對微生物在醫學、環境、農工業方面的應用。 (二)針對各類癌症及感染疾病、醫藥學的重要關鍵蛋白質進行結構與功能之研究,了解癌症引發與致病機制,以利藥物設計。 (三)研究各類感染性病毒顆粒與區域蛋白的結構與功能,探討病毒顆粒組裝與感染機制,並確認「抗原決定位」,發展標靶疫苗,提升疫苗及藥物的專一性。 (四)進行國內外相關領域合作,研究重要蛋白質結構及功能之關係,如細胞膜蛋白質、海生腔腸動物螢光酵素、生物能源關鍵酵素、蘭花與植物相關蛋白質、斑馬魚與魚蝦類蛋白質等結構。透過結構的研究,對其生物功能進一步瞭解 。 (五)探討發展白質結晶、X光繞射與蛋白質結晶學基礎理論,特別是繞射數據的相位角問題。利用X光單波長異常散射與分子平均法進行正確相位角計算與相位角誤差改善,以利電子密度圖的計算及晶體結構解析。

代表作: For the complete list, please go to https://orcid.org/0000-0002-5157-4288 or https://scholar.google.com.tw/citations?hl=zh-TW&user=oTFF8K0AAAAJ&view_op=list_works&sortby=pubdate or https://www.researchgate.net/profile/Chun-Jung-Chen-3
  • Hsieh, Y.-C., Guan, H.-H., Lin, C.-C., Huang, T.-T., Chuankhayan, P., Chen, N.-C., Wang, N.-H., Hu, P.-L., Tsai, Y.-C., Huang, Y.-C., Yoshimura, M., Lin, P.-J., Hsieh, Y.-H.*, Chen, C.-J.* “A structure-based high-efficiency homogeneous antibody platform by endoglycosidase Sz provides insights into its transglycosylation mechanism”. JACS Au, 2024, 4, 2130–2150.
  • Chiang, W. T., Chang, Y.-K., Hui, W.-H., Chang, S.-W., Liao, C.-Y., Chang, Y.-C., Chen, C.-J., Wang, W.-C., Lai, C.-C., Wang, C.-H., Luo, S.-Y., Huang, Y.-P., Chou, S.-H., Horng, T.-L., Hou, M.-H., Muench, S. P., Chen, R.-S., Tsai, M.-D.*, Hu, N.-J.* “Structural basis and synergism of ATP and Na+ activation in bacterial K+ uptake system KtrAB”. Nature Commun. 2024, 15, 3850.
  • Mathimaran, A., Nagarajan, H., Mathimaran, A., Huang, Y.-C., Chen, C.-J., Vetrivel, U., Jeyaraman, J.* “Deciphering the pH-dependent oligomerization of aspartate semialdehyde dehydrogenase from Wolbachia endosymbiont of Brugia malayi: An in vitro and in silico approaches”. Int. J. Biol. Macromol. 2024, 276, 133977.
  • Chen, N.-C., Wang, C.-H., Yoshimura, M., Yeh, Y.-Q., Guan, H.-H., Chuankhayan, P., Lin, C.-C., Lin, P.-J., Huang, Y.-C., Wakatsuki, S., Ho, M.-C.*, Chen, C.-J.* “Structures of honeybee-infecting Lake Sinai virus reveal domain functions and capsid assembly with dynamic motions”. Nature Commun. 2023, 14: 545.
  • Chuankhayan, P., Lee, R.-H., Guan, H.-H., Lin, C.-C., Chen, N.-C., Huang, Y.-C., Yoshimura, M., Nakagawa, A., Chen, C.-J.* “Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product”. Acta Cryst. 2023, D79, 154–167.
  • Chan, S. I.*, Chuankhayan, P., Nareddy, Pavan K., Tsai, I-K., Tsai, Y.-F., Chen, K. H.-C., Yu, S. S.-F.*, Chen, C-J.* “The mechanism of PQQ-dependent hydride transfer chemistry from spectroscopic and high-resolution X-ray structural studies of the methanol dehydrogenase from Methylococcus capsulatus (Bath)”. J. Am. Chem. Soc. 2021, 143, 9, 3359–3372.
  • Guan, H.-H., Huang, Y.-H. Lin, E.-S., Chen, C.-J.*, Huang, C.-Y.* “Plumbagin, a natural product with potent anticancer activities, binds to and inhibits dihydroorotase, a key enzyme in pyrimidine biosynthesis”. Int. J. Mol. Sci. 2021, 22(13), 6861.
  • Guan, H.-H., Huang, Y.-H. Lin, E.-S., Chen, C.-J.*, Huang, C.-Y.* “Structural basis for the interaction modes of dihydroorotase with the anticancer drugs 5-fluorouracil and 5-aminouracil”. Biochem. Biophys. Res. Commun. 2021, 551, 33–37.
  • Guan, H. H., Huang, Y. H., Lin, E. S., Chen, C.-J.*, Huang, C.-Y.* “Structural analysis of Saccharomyces cerevisiae dihydroorotase reveals molecular insights into the tetramerization mechanism”. Molecules, 2021, 26, 7249.
  • Guan, H.-H., Huang, Y.-H. Lin, E.-S., Chen, C.-J.*, Huang, C.-Y.* “Complexed crystal structure of Saccharomyces cerevisiae dihydroorotase with inhibitor 5-fluoroorotate reveals a new binding mode”. Bioinorg. Chem. Appl. 2021, 2021, 2572844.
  • Astani, E. K, Ersali, S., Lee, Y.-C., Lin, P.-J., Huang, Y.-C., Huang, P.-Y., Jafarian, V., Hosseinkhani, S*, Chen, C.-J.* “Determination and evaluation of secondary structure content derived from calcium-induced conformational changes in wild-type and mutant mnemiopsin 2 by synchrotron-based Fourier-transform infrared spectroscopy”. Biochim. Biophys. Acta–protein and Proteomics, 2020, 1868(12), 140528.
  • Chen, S.-K. Guan, H.-H., Wu, P.-H., Lin, L.-T., Wu, M.-C., Chang, H.-Y., Chen, N.-C., Lin, C.-C., Chuankhayan, C., Huang, Y.-C., Lin, P.-J., Chen, C.-J.* “Structural insights into histidine-containing phosphotransfer protein and receiver domain of sensor histidine kinase suggest a complex model in two-component regulatory system in Pseudomonas aeruginosa”. IUCrJ, 2020, 7, 934–948.
  • Yoshimura, M., Chen, N.-C., Guan, H.-H., Chuankhayan, P., Lin, C.-C., Nakagawa, A., Chen, C.-J.* “Non-crystallographic symmetry constraint map obtained by direct density optimization”. Acta Cryst. 2020, D76, 147–154.
  • Astani, E. K., Chen, N.-C. Huang, Y.-C., Ersali, S., Lin, P.-J., Guan, H.-H., Lin, C.-C., Chuankhayan, P., Chen, C.-J.* “Characterization of dimeric interactions within protrusion-domain interfaces of parallel and X-shaped conformations of Macrobrachium rosenbergii nodavirus: a theoretical study using the DFT method along with QTAIM and NBO analyses”. ACS Omega, 2020, 5, 3428–3443.
  • Chen, N.-C., Yoshimura, Naoyuki Miyazaki, M.Guan, H.-H., Chuankhayan, P., Lin, C.-C., Chen, S.-K., Lin, P.-J., Huang, Y.-C., Iwasaki, K., Nakagawa, A., Chan, S. I., Chen, C.-J.* “The atomic structures of shrimp nodaviruses reveal new dimeric spike structures and particle polymorphism”. Commun. Biol. 2019, 2:72.
  • Guan, H.-H., Hsieh, Y.-C., Lin, P.-J., Huang, Y.-C. Yoshimura, M., Chen, L.-Y., Chen, S.-K., Chuankhayan, P., Lin, C.-C., Chen, N.-C., Nakagawa, A., Chan, S. I., Chen, C.-J.* “Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from Desulfovibrio gigas”. Sci. Rep. 2018, 8:14935.
  • Chen, L.-Y., Huang, Y.-C., Huang, S.-T., Hsieh, Y.-C., Guan, H.-H., Chen, N.-C., Chuankhayan, P., Yoshimura, M., Tai, M.-H.*, Chen, C.-J.* “Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor”. Sci. Rep. 2018, 8(1): 287.
  • Huang, Y.-H., Guan, H.-H., Chen, C.-J.*, Huang, C.-Y.* “Staphylococcus aureus single-stranded DNA-binding protein SsbA can bind but cannot stimulate PriA helicase”. PLoS ONE, 2017, 12, e0182060.
  • Yoshimura, M., Chen, N.-C., Guan, H.-H., Chuankhayan, P., Lin, C.-C., Nakagawa, A., Chen, C.-J.* “Ab initio phasing by molecular averaging in real space with new criteria: application to structure determination of a betanodavirus”. Acta Cryst. 2016, D72, 830–840.
  • Chiu, H.-H., Hsieh, Y.-C., Chen, Y.-H., Wang, H.-Y., Lu, C.-Y., Chen, C.-J.*, Li, Y.-K.* “Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus”. Appl. Microbiol. Biotechnol. 2016, 100, 8411–8422.
  • Guan, H.-H. Yoshimura, M., Chuankhayan, P., Lin, C.-C., Chen, N.-C., Yang, M.-C., Ismail, A., Fun, H.-K., Chen, C.-J.* Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism”. Sci. Rep. 2015, 5:16441.
  • Chen, N.-C., Yoshimura, M., Guan, H.-H., Wang, T.-Y., Misumi, Y., Lin, C.-C., Chuankhayan, P., Nakagawa, A., Chan, S. I., Tsukihara, T., Chen, T.-Y.*, Chen, C.-J.* “Crystal structures of a piscine betanodavirus: mechanisms of capsid assembly and viral infection”. PLoS Path. 2015, 11(10): e1005203.
  • Chen, K. H.-C., Chuankhayan, C., Wu, H.-H., Chen, C.-J.*, Fukuda, M., Yu, S. S.-F.*, Chan, S. I.* “The bacteriohemerythrin from Methylococcus capsulatus (Bath): Crystal structures reveal Leu114 regulates the substrate tunnel”. J. Inorg. Biochem. 2015, 15, 81–89.
  • Lin, C.-C., Chuankhayan, P., Chang, W.-N., Kao, T.-T., Guan, H.-H., Fun, H.-K., Nakagawa, A., Fu, T.F.*, Chen, C.-J.* “Crystal structures of the hydrolase domain of zebrafish 10-formyltetrahydrofolate dehydrogenase and its complexes reveal a complete set of key residues for hydrolysis and product Inhibition”. Acta Cryst. 2015, D71, 1006–1021.
  • Chen, C.-D., Huang, Y.-C., Chiang, H.-L., Hsieh, Y.-C., Chuankhayan, P., Chen, C.-J.* “Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination”. Acta Cryst. 2014, D70, 2331–2343.
  • Praditwongwan, W, Chuankhayan, P., Saoin, S., Wisitponchai, T., Lee, V. S., Nangola, S., Hong, S. S., Minard, P., Boulanger, P., Chen, C.-J.*, Tayapiwatana, C.* “Crystal structure of an antiviral ankyrin targeting the HIV-1 capsid and molecular modeling of the ankyrin-capsid complex”. J. Comput. Mol. Des. 2014, 28, 869–884.
  • Chuankhayan, P., Tao, T.-T., Lin, C.-C., Guan, H.-H., Nakagawa, A., Fu, T.-F.*, Chen, C.-J.* “Structural insights into the hydrolysis and polymorphism of methotrexate polyglutamate by zebrafish γ-glutamyl hydrolase”. J. Med. Chem. 2013, 56, 7625–7635.
  • Tien, Y.-C., Chuakhanyan, P., Huang, Y.-C., Chen, C.-D., Alikhajeh, J., Chang, S.-L., Chen, C.-J.* “Crystal structures of rice (Oryza sativa) glyceraldehyde-3-phosphate dehydrogenase complexes with NAD+ and sulfate suggests involvement of Phe37 in NAD+-specificity”. Plant Mol. Biol. 2012, 80, 389–403.
  • Chen, C.-D., Lin, C.-H., Chuankhayan P., Huang, Y.-C., Hsieh, Y.-C., Huang, T.-F., Guan, H.-H., Liu, M.-Y., Chang, W.-C., Chen, C.-J.* “Crystal structures of complexes of the branched-chain aminotransferase from Deinococcus radiodurans with α-ketoisocaproate and L-glutamate suggest the radiation resistance of this enzyme for catalysis”. J Bacteriol. 2012, 194, 6206–6216.
  • Fang, J.-Y., Chiang, Y.-L., Hsieh, Y.-C., Wang, V. C.-C., Huang, Y.-C., Chuankhayan, P., Liu, M.-Y., Chan, S. I., Chen, C.-J.* “Crystallization of adenylylsulfate reductase from Desulfovibrio gigas: A strategy based on controlled protein oligomerization”. Cryst. Growth & Des. 2011, 11, 2121-2134.
  • Hsieh, Y.-C., Liu, M.-Y., Wang, V. C.-C., Chiang Y.-L., Liu, E.-H., Wu, W., Chan, S. I., Chen, C.-J.* “Structural insights into the enzyme catalysis from comparison of three forms of dissimilatory sulfite reductase from Desulfovibrio gigas”. Mol. Microbiol. 2010, 78, 1101–1116.
  • Chang, C.-Y., Hsieh, Y.-C., Wang, T.-Y., Chen, Y.-C., Wang Y.-K., Chiang, T.-W., Chen, Y.-J., Chen, C.-J.*, Wu, T.-K*. “Crystal structure and mutational analysis of aminoacylhistidine dipeptidase from Vibrio alginolyticus reveal a new architecture of M20 metallopeptidases”. J. Biol. Chem. 2010, 285, 39500–39515.
  • Hsieh, Y.-C., Wu, Y.-J., Chiag, T.-Y., Kuo, C.-Y., Shrestha, K. L., Chao, C.-F., Huang, Y.-C., Chuankhayan, P., Wu, W., Li, Y.-K.*, Chen, C.-J.* “Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis: a chitinase without chitin-binding and insertion domains”. J. Biol. Chem. 285, 2010, 31603–31615.
  • Chuankhayan, P., Hsieh, C.-Y., Huang, Y.-C., Hsieh, Y.-Y., Guan, H.-H., Hsieh, Y.-C., Tien, Y.-C., Chen, C.-D., Chiang, C.-M.*, Chen, C.-J.* “Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis”. J. Biol. Chem. 2010, 285, 23249–23262.
  • Guan, H.-H. Guan, Goh, K.-S., Davamani, F., Wu, P.-L., Huang, Y.-W., Jeyakanthan, J., Wu, W.*, Chen, C.-J.* “Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins”. J. Struct. Biol. 2010, 169, 294–303.
  • Chiang, Y.-L., Hsieh, Y.-C., Fang, J.-Y., Liu, E.-H., Huang, Y.-C., Chuankhayan, P., Jeyaraman, J., Liu, M.-Y., Chan, S. I., Chen, C.-J.* “Crystal structure of adenylylsulfate reductase from Desulfovibrio gigas suggests a potential self-regulation mechanism involving the C-terminus of the β-subunit”. J. Bacteriol. 2009, 191, 7597–7608.
  • Yang, M.-C., Guan, H.-H., Liu, M.-Y., Lin, Y.-H., Yang, J.-M., Chen, W.-L., Chen, C.-J.*, Mao, S.J.T.* “Rational design for crystallization of -lactoglobulin and vitamin D3 complex: revealing a secondary binding site”. Cryst. Growth and Des. 2008, 8, 4268–4276.
  • Yang, M.-C., Guan, H.-H., Liu, M.-Y., Lin, Y.-H., Yang, J.-M., Chen, W.-L., Chen, C.-J.*, Mao, S.J.T.* “Crystal structure of a secondary vitamin D3 binding site of milk -lactoglobulin”. Proteins, 2008, 71, 1197–1210.
  • Elmi, F., Lee, H.-T., Huang, J.-Y., Hsieh, Y.-C., Wang, Y.-L., Chen, Y.-J., Shaw, S.-Y.*, Chen C.-J.* “Stereoselective esterase from Pseudomonas putidareveals an / hydrolase fold for D--acetylthioisobutyric acid synthesis”. J. Bacteriol. 2005, 187, 8470–8476.
  • Huang, J.-Y, Chang, T, Chang, C.-Y., Chen, C.-J.* “Crystal structure of a nucleoside diphosphate kinase required for coleoptile elongation in rice (Oryza sativa L.)”. J. Strut. Biol. 2005, 150, 309–318.
  • Lee, S.-C., Guan, H.-H., Wang, C.-H., Huang, W.-N., Chen, C.-J.*, and Wu, W.* “Structural basis of venom citrate-dependent heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3”. J. Biol. Chem. 2005, 280, 9567–9577.