Home / Research Highlights

Temporal Transformation of Indium Speciation in Rice Paddy Soils and Spatial Distribution of Indium in Rice Rhizosphere
Hsin-Fang Chang, Puu-Tai Yang, Yohey Hashimoto, Kuo-Chen Yeh, Shan-Li Wang*
2023/12/31
Indium is a potentially toxic element that could enter human food chains, including soil-rice systems. The submerged environment in rice paddy soil results in temporal and spatial variations in the chemical properties of the rice rhizosphere and bulk soils, expected to cause changes in indium's chemical speciation and consequently affect its bioavailability. Therefore, this study aimed to investigate indium speciation and fractionation in soils at different periods of rice growth under continuous submergence using X-ray absorption spectroscopy and a sequential extraction method. The predominant indium species were identified as indium-associated Fe hydroxide, and indium hydroxide and phosphate precipitates. The reductive dissolution of indium-associated Fe hydroxides led to the release of indium into the soil solution under continuous submergence of soils, and the released indium concentration decreased with time due to re-sorption and re-precipitation. Meanwhile, indium hydroxide was found to be the predominant species in rice rhizosphere using μ-X-ray absorption spectroscopy. The relative depletion of indium-associated Fe hydroxides in the rice rhizosphere was attributed to the low mobility of indium from bulk soil to rice rhizosphere and the root uptake of indium associated with Fe hydroxide around rice roots. Consequently, indium uptake by rice roots was lower during the reproductive and grain-ripening stage of rice growth. Understanding the behavior of indium will help develop a strategy to minimize uptake into crops in indium-contaminated paddy soils.