Home / Research Highlights

Immobilized Single Molecular Molybdenum Disulfide on Carbonized Polyacrylonitrile for Hydrogen Evolution Reaction
T. S. Zeleke, M.-C. Tsai, M. A. Weret, C.-J. Huang, M. K. Birhanu, T.-C. Liu, C.-P. Huang, Y.-L. Soo, Y.-W. Yang, W.-N. Su*, and B.-J. Hwang*
2019/08/01
Designing a MoS2 catalyst having a large number of active sites and high site activity enables the catalytic activity toward the hydrogen evolution reaction to be improved. Herein, we report the synthesis of a low-cost and catalytically active immobilized single molecular molybdenum disulfide on carbonized polyacrylonitrile (MoS2-cPAN) electrocatalyst. From the extended X-ray absorption fine structure spectra analysis, we found that the as-prepared material has no metal–metal scattering and it resembles MoS2 with a molecular state. Meanwhile, the size of the molecular MoS2 has been estimated to be about 1.31 nm by high-angle annular dark-field scanning transmission electron microscopy. A low coordination number and maximum utilization of the single molecular MoS2 surface enable MoS2-cPAN to demonstrate electrochemical performance significantly better than that of bulk MoS2 by two orders of exchange current density (jo) and turnover frequency to the hydrogen evolution.