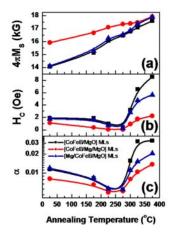
Effects of Capping Layers on the Dynamic Magnetic Properties of CoFeB

Chih-Huang Lai (賴志煌), Ruo-Fan Jiang (江若帆), and Ding-Shuo Wang (王鼎碩)


Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan

Since the tunneling magnetoresistance ratios (TMRs) are significantly affected by the crystallization and interfacial compositions at $Co_{60}Fe_{20}B_{20}/$ MgO/ Co₆₀Fe₂₀B₂₀ interfaces, the interfacial compositions of annealed samples are studied by x-ray photoemission spectroscopy. The formation of B, Fe, and Co oxides at the Co₆₀Fe₂₀B₂₀/ MgO interface was reported to be process-dependent. TMR of $Co_{40}Fe_{40}B_{20}/$ Co₄₀Fe₄₀B₂₀ MTJs was increased after annealing at 275°C, which was ascribed to a thermally induced reduction of interfacial Fe-oxides. In addition to reduce the Co and Fe oxides, post-annealing may also incorporate B into the MgO to form a composite MgB_xO_y layer.² In this work, we correlate the change of interfacial composition at CoFeB/ MgO with the variations of static and dynamic magnetic characteristics of CoFeB, in particular, the damping parameter α .

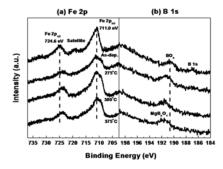

To clearly illustrate the interfacial characteristics, we deposited $Co_{40}Fe_{40}B_{20}(5 \text{ nm})/MgO(5 \text{ nm})$ multilayers (MLs) on oxidized Si substrate by using magnetron sputtering in the presence of a static magnetic field (~100 Oe) to induce the in-plane uniaxial anisotropy. The post-annealing was carried out in vacuum with a magnetic field of 1 kOe parallel to the direction of the deposition field for 2 hrs. The out-of-plane angular dependence of ferromagnetic resonance (FMR) measurements were performed to extract the damping parameter α . The valance states at interfaces of the CoFeB/MgO MLs were obtained by x-ray photoemission spectroscopy (XPS), performed at the National Synchrotron Radiation Research Center, Taiwan. The energy resolution of synchrotron-based light source was 0.05 eV. The variations of $4\pi M_S$, H_C , and α of CoFeB/ MgO MLs with post-annealing temperature are shown in Fig. 1. Post-annealing monotonically increased the $4\pi M_S$; on the other hand, the reductions of H_C from 1.85 to 0.44 Oe and α from 0.0115 to 0.0054 were observed when the temperature was raised from room temperature to 275°C. The crystallization of CoFeB was triggered by annealing MLs at temperatures higher than or equal to 300°C. The crystallization of CoFeB resulted in increases in 4πM_S, H_C , and α .

Figure 2 shows the XPS spectra of Fe 2p and B 1s from the $Co_{40}Fe_{40}B_{20}(5 \text{ nm})/\text{MgO}(5 \text{ nm})$ MLs. The spectra in Fig. 2 were obtained from the region corresponding to the top interface CoFeB/ MgO. Small amounts of Fe-oxides and B-oxides were found in the as-deposited samples due to the oxidation of the CoFeB by oxygen ions released by the rf sputtering of MgO. The Fe $2p_{3/2}$ peak was located at 711.0 eV, accompanying a distinguishable satellite peak, approximately 8 eV higher than the main Fe $2p_{3/2}$ peak. Based on this spectrum, we suggested that the Fe-oxide initially formed at the top

interface was mainly composed of Fe₂O₃. After annealing at the temperatures higher than 275°C, the satellite peaks of Fe-oxide vanished. In addition, the Fe peaks shifted to lower binding energy as well, which indicated that the reduction of the Fe-oxide to metallic Fe.¹ On the other hand, the peak of initially formed B-oxide shifted to higher binding energy after post-annealing, which indicated that B was further incorporated into the MgO, and thus an intermixed MgB_XO_Y composite was formed.²

Fig. 1: Static/ dynamic magnetic properties of (a) $4\pi Ms$, (b) H_C , and (c) α as a function of annealing temperature for CoFeB(5 nm)/ MgO(5 nm), CoFeB(5 nm)/ MgO(1nm)/ MgO(5 nm), and Mg(1nm)/ CoFeB(5 nm)/ MgO(5 nm) MLs.

Fig. 2: Normalized XPS spectra of the (a) Fe 2p and (b) B 1s at the top interface in the CoFeB(5 nm)/ MgO(5 nm) MLs.

References

- [1] Y. Jang et al., Appl. Phys. Lett. 91, 102104 (2007).
- [2] J. C. Read *et al.*, Appl. Phys. Lett. **90**, 132503 (2007).
- [3] C. L. Wang *et al.*, J. Phys. D: Appl. Phys. **42**, 115006 (2009).