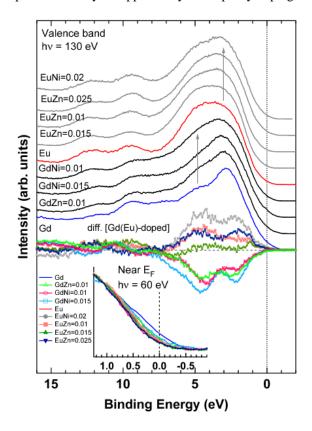
Electronic Structure of RuSr₂R(Cu_{1-x}M_x)₂O₈ (R=Gd, Eu and M=Ni, Zn)

S.-W. Han (韓相旭), D.-C. Ling (林大欽), and W.-F. Pong (彭維鋒)

Department of Physics, Tamkang University, Taipei, Taiwan

The ruthenium-based layered copper oxide, RuSr₂RCu₂O₈ (Ru-1212), where R is small rare-earth ions like Gd and Eu, has attracted intensive investigation over the last decade because of the unconventional appearance of high-temperature superconductivity (T_C = 20 - 50 K) below long-range magnetic ordering ($T_M =$ 100 - 150 K) [1]. Recently, D.C. Ling et al. [2] have reported the impurity induced influence both on superdonductivity and ferromagnetism for the Ni- and Zn-substituted Ru-1212. The Cu substitution by Zn exhibits the contrast reduction rate of transition temperature, T_C, between RuGd-1212 (rapid) and RuEu-1212 (slow), respectively, while Ni melts regularly the superconductivity regardless of the kind of base materials (Gd and Eu). In contrast to the pair-breaking effects by Ni and Zn impurities, the magnetic ordering, T_M, incrases in RuGd-1212 as doped regardless of the kind of impurities while it decreases in RuEu-1212.

In order to elucidate the doping effects, the electronic structure of RuR-1212 (R=Gd, Eu) and doped samples has been investigated by using photoemission spectroscopy (PES), which were performed at the beamline 08A equipped with an OMICHRON EA125 hemishperical analyzer with a base pressure better than 1x10⁻⁹ mbar. The ranges of photon energy were used between 50 and 160 eV, which energy resolution is approximately between 150 and 300 meV. For clean surface, we scraped the sample in-situ using a diamond file.


Figure 1 shows the valence-band spectra obtained at the $h\nu=130$ eV. The main valence-band in the range of 1-8 eV represent the Cu 3d partial spectral weights (PSW's) because the $h\nu=130$ eV is above the Cooper minimum of the Ru 4d cross section (~ 100 eV). However, the contribution of oxygen still remains at this photon energy due to the ratio of photon ionization cross section between Cu $(2+:3d^9)$ and O $(2-:2p^4)$ is 0.67:0.32 under the consideration of the formula units.

Two satellites around 9-13 eV are not due to the contamination like CO. They have main contribution from the hybridization of Cu and Gd (Eu) 4f with oxygen. The Gd and Eu 4d \rightarrow 4f resonance occur around 140-160 eV photon energy. The PSW's of Gd and Eu 4f states are localized at 8.4 eV (FWHM = 2.8 eV) and 7 eV (FWHM = 3.3 eV) with very weak features near E_F , respectively.

Upon doping, the peak (indicated by arrow) around 3-4 eV for RuEu-1212 and 5-7 eV for RuGd-1212 increases and broadens, respectively. The difference clarifies the doping dependence which was taken by subtracting the valence band of doped sample from that of undoped RuR-1212 (R=Gd and Eu). They are in good agreement with the calculations [3]. Note that the bandwidth and shape is clearly different between RuGd-1212 and RuEu-1212 supporting the different spin state

due to different amount of mixed Cu valence states, in fact Cu^{2+} and Cu^{3+} .

Inset displays that the spectral weights near the Fermi energy, E_F . The chosen photon energy, hv = 60 eV, is above the Ru $4p \rightarrow 4d$ resonance, which is known to occur around 52 eV photon energy. The intensity decreases along with doping for RuGd-1212 while the case of RuEu-1212 has no significant change. This indicates why the transition temperature, T_C , of superconductivity is suppressed by the impurity doping.

Fig. 1: hv = 130 eV valence-band spectra. The difference was taken by subtracting the valence band of doped sample from that of undoped RuR-1212 (R=Gd and Eu). Inset shows the spectra near E_F at hv = 60 eV.

References

- [1] J. Tallon, C. Bernhard, M. Bowden, P. Gilberd, T. Stoto, and D. Pringle, IEEE Trans. Appl. Supercond. **9**, 1696 (1999).
- [2] D. C. Ling, S. L. Wu, M. H. Lin, and F. Z. Chien, Physica C (to be published).
- [3] K. Nakamura, K. T. Park, and A. J. Freeman, Phys. Rev. B **63**, 024507 (2000).