
Visible Quantum Cutting in Tb³⁺-doped Ba₃Gd(PO₄)₃ Phosphors via Downconversion

Yu-Jei Wang (王毓傑)¹, Bing-Ming Cheng (鄭炳銘)², and Teng-Ming Chen (陳登銘)¹

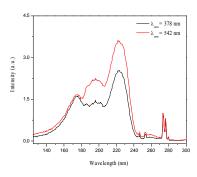

¹Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan

Figure 1 presents the VUV and UV PL spectra of $Ba_3Gd(PO_4)_3:5\%Tb^{3+}$ upon excitation at $4f^8-4f^75d$ (196 and 222 nm) on Tb^{3+} and $^8S_{7/2}-^6I_J$ excitation (273 nm) on Gd^{3+} , respectively. The spectra were scaled on the emission intensity of $^5D_3-^7F_5$ transition and we have observed that the relative intensity of the emission from 5D_4 levels was much stronger under the excitation to $4f^8-4f^75d$ levels on Tb^{3+} than that to 6I_J (273 nm) levels on Gd^{3+} , which clearly indicates the occurrence of the QC effect in the visible spectral region. This observation shows that Tb^{3+} -pumping with high energy VUV or short-wavelength UV is equally important as Gd^{3+} -pumping in realizing visible QC of Tb^{3+} .

Fig. 1: Emission spectra of $Ba_3Gd(PO_4)_3:5\%Tb^{3+}$ upon excitation at (a) 196, (b) 222 and (c) 273 nm. The spectra are scaled on the ${}^5D_3-{}^7F_6$ transition of Tb^{3+} .

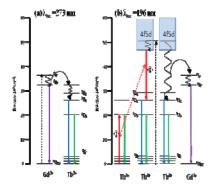
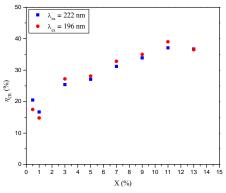

Figure 2 presents the VUV-UV PLE spectra of $Ba_3Gd(PO_4)_3$:5% Tb^{3+} in the range of 125 to 300 nm, monitored at 5D_4 - 7F_5 emission (542 nm) and 5D_3 - 7F_6 emission (378 nm) on Tb^{3+} , respectively.

Fig. 2: Excitation spectra of Ba₃Gd(PO₄)₃:5%Tb³⁺ monitored at 5D_4 - 7F_5 emission (542 nm) and 5D_3 - 7F_6 emission (378 nm) on Tb³⁺.


As an example, a plausible mechanism for visible quantum cutting is proposed and depicted in Fig. 3. Figure 3(a) shows that no QC occurs with $\lambda_{\rm ex} = 273$ nm because of insufficient pumping energy. However, the observed QC process is proposed to occur in Fig. 3(b). First, cross-relaxation results from the pumping of Tb³⁺

and then the released energy from $4f^{5}d$ to ${}^{5}D_{2}$ of Tb^{3+} was used to pump a neighboring Tb^{3+} . Secondly, the direct energy transfer process is expected to occur and part of energy will then transfer between ${}^{5}D_{J}$ of Tb^{3+} and ${}^{6}I_{J}$ or ${}^{6}P_{J}$ of Gd^{3+} levels and follows the emission of ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$.

Fig. 3: Possible mechanisms for visible QC under excitation of VUV with λ_{ex} at (a) 273 and (b) 196 nm; ① and ② denote cross relaxation (CR) and direct energy transfer, respectively.

The dependence of calculated cross-relaxation efficiency on the Tb^{3+} -content of $Ba_3Gd(PO_4)_3$: $x\%Tb^{3+}$ under VUV excitation at 196 and 222 nm, respectively, are summarized in Fig. 4.

Fig. 4: Dependence of the calculated cross relaxation efficiency of Tb³⁺-content for Ba₃Gd(PO₄)₃:x%Tb³⁺ under excitation of 196 and 222 nm.

In conclusion, visible QC under excitations at 222 and 196 nm through a downconversion mechanism was observed, respectively. By utilizing the Tb^{3+} - Tb^{3+} couples, QC process has been realized in $Ba_3Gd(PO_4)_3:Tb^{3+}$. The original Tb^{3+} and the neighboring Tb^{3+} and/or Gd^{3+} ions revert to their ground states by emitting two photons. Based on the PL and PLE spectra, we have calculated the theoretical quantum efficiency to be 137% and 139% under excitation at 222 and 196 nm for $Ba_3Gd(PO_4):5\%Tb^{3+}$, respectively.