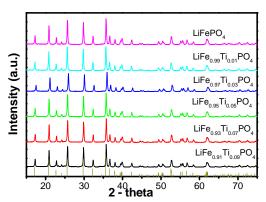
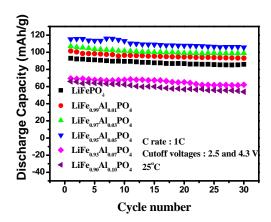

The Doping Effects on the Properties of LiFePO₄ by Aliovalent Cations

She-huang Wu (吳溪煌) and Mao-Sung Chen (陳懋松)


Department of Material Engineering, Tatung University, Taipei, Taiwan

 $\text{LiFe}_{1-x}M_x\text{PO}_4\ (0.01 \le x \le 0.1,\ M=\text{Ti},\ Al)$ powders were prepared via a solution method, the XRD patterns were observed with the beam lines of 01C of the National Synchrotron Radiation Research Center of Taiwan, shown in Fig. 1 and Fig. 2.


The electrochemical properties as cathode material for lithium batteries of the prepared powders were determined by capacity retention study. As shown in Fig. 3 to 5 , LiFe $_{0.95}$ Al $_{0.05}$ PO $_4$ and LiFe $_{0.97}$ Ti $_{0.03}$ PO $_4$ [1] show the most promising cycling performance and rate capability among the prepared samples, respectively. It might be attributed to these samples have higher Li⁺ diffusivity than others. That can be manifested that have higher lattice constant.

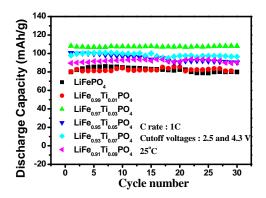

Fig. 1: XRD patterns of the LiFe_{1-x}Al_xPO₄ samples prepared by solution method with heat treatment 700° C for 8 h under N₂ flowing atmosphere.

Fig. 2: XRD patterns of the LiFe_{1-x} Ti_xPO_4 samples prepared by solution method with heat treatment 700° C for 8 h under N_2 flowing atmosphere.

Fig. 3: Results of capacity retention study for the LiFe_{1-x}Al_xPO₄/Li coin-type cells

Fig. 4: Results of capacity retention study for the LiFe_{1-x}Al_xPO₄/Li coin-type cells

Reference

[1] S.-h. Wu, M.-S. Chen, C.-J. Chien, and Y.-P. Fu, J. Power Sources **189**, 440 (2009).