Effect of Li₂O₃ Addition on the Preparation of (Y_{2-v}Li_v)Ti₂O_{7-v}

Wen-Ping Su (蘇文彬)¹, Yu-Hsuen Lee (李攸軒)¹, Ching-Tien Hsieh (謝青典)¹, Hwo-Shuenn Sheu (許火順)², Jyh-Fu Lee (李志甫)², Yong-Ping Chiang (江永平)², and Huey-Chuen I. Kao (高惠春)¹

¹Department of Chemistry, Tamkang University, Taipei, Taiwan ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan

A new series of $(Y_{2-y}Li_y)Ti_2O_{7-y}$ having an ordered pyrochlore phase was prepared by a solid state reaction method with a solid solution range of $0.05 \le y \le 0.10$. Unit cell parameters obtained by the Rietveld refinement method shows that the a-axis decreases linearly with increasing the amount of Li ion addition, indicating the successful incorporation of the Li ion into unit cell. The average x-fractional coordinate of the O(1) site depends

on the ionic radius ratio of $r(A^{3+})/r(Ti^{4+})$ in the $A_2Ti_2O_7$ with a pyrochlore phase. The Ti K-edge XANES spectra of the $(Y_{2-y}Li_y)Ti_2O_{7-y}$ show that the valence of the Ti ions is slightly less than 4 so that Ti is in the mixed valence state. Average particle size increases with increasing the amount of extra Li ion addition, which acts as a flux to lower the melting point of the materials.