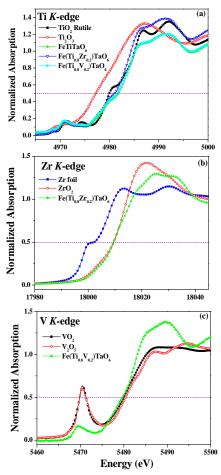
XANES Study of the Valance States in the Rutile Structure FeTiTaO₆ and Fe(Ti_{0.8}M_{0.2})TaO₆ (M= Zr, V)


J.-W. Mi (宓君緯)¹, S.-Y. Wu (吳勝允)¹, T.-S. Chan (詹丁山)², and J.-F. Lee (李志甫)²

¹Department of Physics, National Dong Hwa University, Hualien, Taiwan ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan

At present, there is a great interest to develop new piezoelectric/ferroelectric/relaxor ferroelectric and multiferroic materials do that not contain environmentally unfriendly lead. BiMnO, BiFeO3 and the recently synthesized Bi₂FeCrO₆ are among the leadfree multiferroics that attract current attention. Moreover, there is an interest to bring d^0 and d^n (0<n<10) transition metal atoms together in complex oxides to realize multiferroic properties. Considering that rutile TiO2 sits on the verge of an instability that tends to drive the material towards ferroelectric behavior, we believed that complex rutile oxides containing Ti⁴⁺: 3d⁰ together with another d⁰ atom such as Ta⁵⁺/Nb⁵⁺ and an appropriate dⁿ atom would exhibit novel ferroic/multiferroic properties. Recently, Mani and co-workers has been report that rutile FeTiTaO₆ have relaxor ferroelectric behavior, with transition temperature around 550 K.

On the other hand, the X-ray absorption spectroscopy (XAS) using synchrotron radiation is a powerful tool to investigate the structural and electronic properties of element of interest present in a sample. In this study, we focus on the oxidation state by measuring X-ray absorption near-edge structure (XANES) spectra. The authors dope Zr (Group IV-b) and V (Group V-b) to Ti (Group IV-b) site in FeTiTaO₆, and making sample chemical formula of $Fe(Ti_{0.8}M_{0.2})TaO_6$ (M = Zr, V). By doping different group element to Ti Site, we believes it will change electronic configuration of d-orbital state, and may affect the electric and magnetic properties. The Fe, Ti, Zr, V K-edges and the Ta L3-edge XANES spectra were recorded in fluorescence mode for synthesized powders mounted on a Scotch tape at a beam line BL01C and BL17C, respectively.

The Ti K-edge XANES spectra of FeTiTaO₆, Fe(Ti_{0.8}Zr_{0.2})TaO₆ and Fe(Ti_{0.8}V_{0.2})TaO₆ along with two standard, rutile TiO₂ (Ti⁴⁺) and Ti₂O₃ (Ti³⁺) are shown in Fig. 1(a). It is well known that the chemical shift of the main absorption edge to lower energy with decreasing valence of transition metals is a powerful tool for probing unknown valence of a transition metal. In Fig. 1(a), a dashed line at the absorption coefficient value of 0.5 is included to elucidate the chemical shift. The $FeTiTaO_{6}, \quad Fe(Ti_{0.8}Zr_{0.2})TaO \quad and \quad Fe(Ti_{0.8}V_{0.2})TaO_{6}$ spectrum is close to Rutile TiO₂ (Ti⁴⁺). This evidence indicates that electron configuration of Ti in FeTiTaO₆, $Fe(Ti_{0.8}Zr_{0.2})TaO_6$ and $Fe(Ti_{0.8}V_{0.2})TaO_6$ sample is d^0 (Ti⁴⁺). Figure 1(b) shows the Zr K-edge XANES spectra of Fe(Ti_{0.8}Zr_{0.2})TaO₆ compare with two standards Zr foil (Zr^{0+}) and ZrO_2 (Zr^{4+}) , and in Fig. 1(c) display the V Kedge XANES spectra of Fe(Ti_{0.8}V_{0.2})TaO₆ compare with standards VO_2 (V^{4+}) and V_2O_5 (V^{5+}). In view of the absorption coefficient value of ~0.5, the Zr K-edge spectrum of samples is close to ZrO₂ (Zr⁴⁺) and the electron configuration is d^0 . Moreover, the V K-edge spectrum of samples is close to VO₂ (V⁴⁺), thus the electron configuration is d^1 . In addition, the Fe K-edge XANES spectra and Ta L_3 -edge XANES spectra of samples also show that the oxidation state of Fe is Fe³⁺ (d^5), and the the Ta is Ta⁵⁺ (d^0). Base on the above XANES results, only Fe³⁺ (d^5) and V⁴⁺ (d^1) may have unpaired electrons. Moreover, according to our magnetic measurements, the magnetic moment of FeTiTaO₆ and Fe(Ti_{0.8}Zr_{0.2})TaO₆ samples is about ~1 μ _B, but the magnetic moment of Fe(Ti_{0.8}V_{0.2})TaO₆ is about ~3 μ _B. The results indicates that Fe³⁺ (d^5) in these samples is in low spin state (string field). The results is in good agreement with our XANES analysis.

Fig. 1: (a) Ti *K*-edge XANES spectra of FeTiTaO₆, Fe(Ti_{0.8}Zr_{0.2})TaO₆, Fe(Ti_{0.8}V_{0.2})TaO₆ along with two standards of Rutile TiO₂ (Ti⁴⁺) and Ti₂O₃ (Ti³⁺). (b) Zr *K*-egde XANES spectra of Fe(Ti_{0.8}Zr_{0.2})TaO₆ with two standards of Zr foil (Zr⁰) and ZrO₂ (Zr⁴⁺). (c) V *K*-edge XANES spectra of Fe(Ti_{0.8}V_{0.2})TaO₆ with two standard of VO₂ (V⁴⁺) and V₂O₅ (V⁵⁺).