
Investigation of Oxidation States and Crystal Structure Modulation in the New Superconductor FeSe_x

C.-L. Chen (陳啟亮)¹, S.-M. Rao¹, C.-L. Dong (董崇禮)², J.-L. Chen (陳政龍)^{3,4}, T.-W Huang (黃子文)¹, B.-H. Mok (莫文浩)¹, K.-W. Yeh (葉國偉)¹, W.-C. Wang (王偉承)³, C.-L. Chang (張經霖)³, T.-S. Chan (詹丁山)², J.-F. Lee (李志甫)², J.-H. Guo (郭晶華)⁴, and M.-K. Wu (吳茂昆)¹

¹Institute of Physics, Academia Sinica, Taipei, Taiwan
²National Synchrotron Radiation Research Center, Hsinchu, Taiwan
³Department of Physics, Tamkang University, Taipei, Taiwan
⁴Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, USA
⁵Department of Physics, National Taiwan University, Taipei, Taiwan

Small changes in the composition of the Se are observed to influence the crystal structure and transport properties of crystals of FeSe_x . X-ray absorption near edge structures spectroscopy (XANES) was used to investigate the electronic structure of these crystals. While Fe K-edge XANES shows a superposition of FeSe and Fe oxide like spectrum the Se K-edge XANES does not show any oxidation. The room-temperature XANES spectra derive an average valency of +1.82 for Fe and -2.18 for Se. The present studies indicate crystal distortion and a p hole variation at the Se site that my lead to itinerant electrons which in turn may be one of the sources responsible for the observed superconducting behavior in these crystals. These results indicate a predominantly Fe 3d character in this system.

Fig. 1: The Fe L_3 -edge spectra with before (FeSe_xO_y, solid red line) and after cleaved (FeSe_{0.88}, cycle red line) and the FeO standards. As the cleaved crystal stays in the UHV chamber, the oxidation state was observed (dottedline is guided the eyes).

Soft x-ray absorption spectra in Fe L-edge (Fig. 1) and O K-edge were recorded at the beamline 20A (HSGM) of NSRRC and beamline 8 of ALS. Total-electron-yield (TEY) mode was used for data collections. To further understand the valence states and the crystal symmetry distortion of the atomic structure. We also measured the Fe and Se K-edge at 17C and 01C hard x-ray beamline in NSRRC. Shown in Fig. 2 and Fig. 3

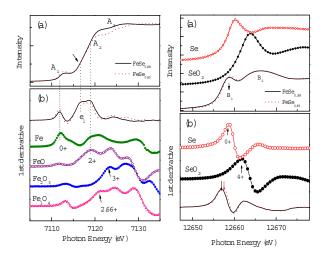


Fig. 2: (left) (a) Fe K-edge $(1s \rightarrow 4p)$ spectra of FeSe_x as a functiom of Se content, (b) shows the first derivative based on the absorption spectra and along with the different valence states of Fe-foil, FeO, Fe₂O₃ and Fe₃O₄ standard samples. Figure 3 (right) (a)The Se K-edge $(1s \rightarrow 4p)$ absorption spectra of a series of FeSe_x as a functiom of Se content along with SeO₂ and Se metal. (b) shows the first derivative based on the absorption spectra.

The lattice distortion observed is confirmed in the XANES measurements and is found to lead to itinerant holes/electrons. This in turn is seen to influence the T_c of the samples. The separation of the Fe in the plane was found to decrease from the 4p orbital to varying (modulating) coordination geometry. The spectra reflect a predominantly metallic Fe character even though oxygen was found on the surface of the crystals incorporated during handling. The spectral evidence confirms that Se defects are leading to an increase at the 4p hole count and in an unchanged structure chain in the Se sites. Such symmetry in the tetragonal FeSe, would lead to an increase in the p holes due to Fe 3d-Se 2p hybridization resulting in decreasing covalence. а