Pressure-induced Mixed-valence Behavior in SmX (X=S, Se, Te) in the Light of Resonant X-ray Emission Spectroscopy

Ignace Jarrige (賈英山)¹, Hitoshi Yamaoka², Jean-Pascal Rueff³, Takeshi Matsumura⁴, Keiichiro Imura⁵, Hiroyuki S. Suzuki⁶, Jung-Fu Lin⁷, Nozomu Hiraoka (平岡望)⁸, Hirofumi Ishii (石井啟文)⁸, and Ku-Ding Tsuei (崔古鼎)⁸

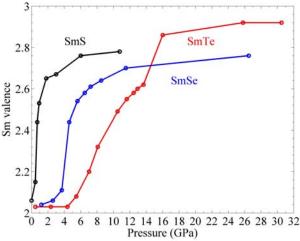
¹Synchroton Radiation Research Center, JAEA, Sayo-cho, Japan

²SPring-8/RIKEN, Hyogo, Japan

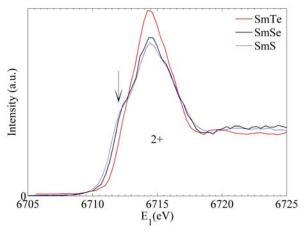
³Synchrotron SOLEIL, Saint-Aubin, France

⁴Hiroshima University, Higashi-Hiroshima, Japan

⁵Nagoya University, Nagoya, Japan


⁶National Institute for Materials Science, Tsukuba, Japan

⁷University of Texas at Austin, Austin, USA


⁸National Synchrotron Radiation Research Center, Hsinchu, Taiwan

Among the samarium monochalcogenide series SmX (X=S,Se,Te), SmS has received the most attention due to its first-order isostructural insulator-to-metal transition (IMT) occurring at 0.65 GPa at room temperature. In contrast, SmSe and SmTe have long been known to undergo a continuous IMT above respectively 3 and 6 GPa. We have measured the pressure dependence of the Sm valence in the three monochalcogenides using x-ray absorption spectroscopy in the partial fluorescence yield mode (PFY-XAS) at the Sm- L_3 edge and Sm-2p3dresonant x-ray emission spectroscopy (RXES). The experiment was performed at the BL12XU beamline at SPring-8 with a total energy resolution of 0.9 eV, provided by combination of a Si(111) double-crystal monochromator and a 1-m bent Si(422) analyzer for the incident and scattered beams, respectively.

The pressure dependence of the Sm valence, inferred from a fit of the PFY-XAS spectra [1], is shown for the three compounds in Fig. 1. The results confirm that, the larger the radius of the chalcogenide ion (S<Se<Te), the more pressure it requires to trigger the IMT, and the more gradually the transition occurs. One can imagine that these differences stem from the different bandwidths of the chalcogenide p states: The larger the bandwith, the more progressive the increase of the valence through hybridization with the Sm d states. Interestingly, there seems to be no clearcut distinction between first (SmS) and second (SmSe, SmTe) order for the IMT as was long thought, but rather a progressive softening of the transition as the chalcogenide ionic radius increases. A plateaulike softening of the valence increase is observed for SmS between 1.5 and 6 GPa. According to ref. [2], the zone-boundary phonons of the longitudinal acoustic [111] branch are almost invariant with increasing pressure within the same range, which interestingly suggests a coupling between the charge and lattice anomalies. A measurement of the phonons in SmSe under pressure is in preparation to confirm this phenomenon. The PFY-XAS spectra, compared for the three compounds in Fig. 2, reveal a shoulder on the low-energy side of the 2+ peak. This feature could correspond to a charge transfer from the chalcogenide ion in the intermediate state, as was recently observed in Pr@C82 [3]. Calculations are underway to verify this hypothesis.

Fig. 1: Pressure dependence of the Sm valence in SmS, SmSe, and SmTe, inferred from the PFY-XAS spectra.

Fig. 2: Sm- L_3 PFY-XAS spectra measured on SmS, SmSe, and SmTe. The arrow indicates the low-energy shoulder.

References

- [1] I. Jarrige *et al.*, Phys. Rev. B **72**, 075122 (2005).
- [2] S. Raymond et al., Phys. Rev. B 66, 220301, (2002).
- [3] H. Yamaoka et al., Phys. Rev. B 80, 205403 (2009).