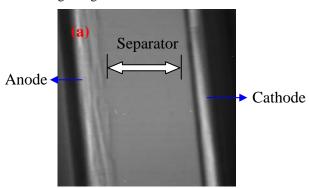
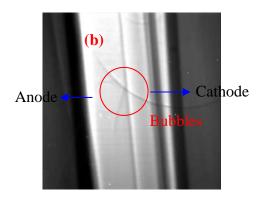
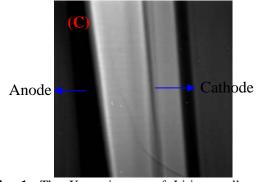
The In-situ of High Resolution X-ray Images of LiFePO₄/MCMB Electrodes under Various Conditions


She-huang Wu (吳溪煌), Yan-Ting Lai (賴彥廷), Mao-Sung Cheng (陳懋松), and Yue-Lun Wu (吳岳倫)


Department of Materials Engineering, Tatung University, Taipei, Taiwan


The LiFePO₄/Li cell exhibits a good cycle performance, whereas the LiFePO₄/MCMB cell suffers an unwilling fading at elevated temperatures. We have done a lot of efforts to figure out a fading mechanism of LiFePO₄/MCMB cells at temperature higher than 50°C by analyzing the cycled cathodes and anodes with SEM, EDS, micro-FTIR, and XPS. The amount of Fe dissolved increases with increasing amount of cathode moisture content, such that the Fe dissolution is suggested to be caused by the formation of the HF as the spinel LiMn₂O₄.

The X-ray images of LiFePO₄/ LiPF₆ in EC/DEC (v/v = 1/1)/ MCMB cell cycled with C/5 at room temperature with cathode containing 4.5×10^3 ppm water during the charging state was shown in Fig. 1. It shows the bubbles formed on anode as that had been reported by Gozdz. Et al.[1], whereas no bubbles are observed on the cathode. Furthermore, the formed rate of the bubbles on the anode increased with C-rate.

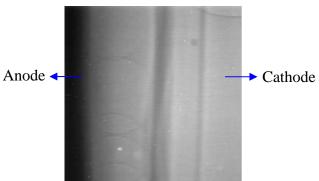

In Fig. 2 shows the X-ray image tests of the LiFePO₄/ LiPF₆ in EC/DEC (v/v = 1/1)/ MCMB cell cycled with C/3 at 55 °C including cathode containing 4.5×10^3 ppm water was shown. Bubbles are observed on anode during charged state.

Fig. 1: The X-ray images of Li-ions cell comprised LiFePO₄ as cathode, MCMB as anode, and $1.0 M \text{ LiPF}_6$ in EC/DEC (v/v = 1/1) as electrolyte in (a) without processing (b) charge process (C) charge process at 30 °C.

Fig. 2: The X-ray image of Li-ions cell comprised LiFePO₄ as cathode, MCMB as anode, and $1.0 M \text{ LiPF}_6$ in EC/DEC (v/v = 1/1) as electrolyte in a charge process at 55 °C.

Reference

[1] A. S. Gozdz and R. K. Jaworski, The Electrochemical Society Meeting Abstracts **96-1**, 52 (1996).