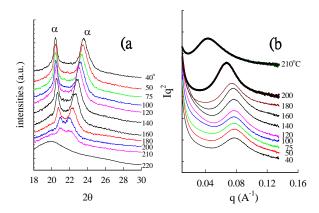

Oriented Crystallization in Electrospun Composite Fibers Revealed by Simultaneous SAXS and WAXS Synchrotron Radiation

Chi Wang (王紀), Chien-Lin Huang (黃建霖), and Young-Wen Cheng (鄭詠文)


Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan

In this report, simultaneous SAXS and WAXS were used to investigate the crystal transformation and lamellar variation of the electrospun Nylon 6 nano-fibers with a diameter of 200 nm during step-wise heating. The results were compared with those obtained from the solution cast Nylon 6 film with a thickness of ~10 μm .

Fig. 1: (a) WAXD intensity profiles of electrospun Nylin 6 fibers at selected annealing temperature T_a from 30 to 220°C, (b) SAXS intensity profiles (Lorentz-correccted plot) of the electrospun fibers at the corrending T_a .

As shown in Fig. 1, the as-spun Nylon 6 fibers possess the mixed crystal modifications of α -form (2 θ = 20.61, 23.36°) and γ -form (2 θ = 10.73, 21.41°) in the absence of regular lamellar spacing. No significant variation of the WAXD and SAXS intensity profiles are seen for an annealing temperature (T_a) of 50°C. At T_a= 75~140°C, the amount of α -form is slightly reduced and a barely-seen SAXS hump is detected ($q_{max} = 0.0946 \text{Å}^{-1}$), suggesting the gradual development of ordered lamellae during heating. In the tempearure range of 140~180°C, no crystal melting takes place, but the SAXS peak becomes pronounced and slightly shifts to the low q region (q_{max} = 0.0783Å⁻¹), indicating the increase of the lamellar thickness. For T_a above 200°C, some *y*-form crystals start to melt, and the position of SAXS peak shifts pronouncedly towards to a low q region, indicating the rapid increase of the lamellar spacing. The long period is ca. 126Å^{-1} at $T_a=210^{\circ}\text{C}$. The diffraction peak at $2\theta=$ 10.73°, which is the fingerprint of strong orientation of γ form, finally disappears at 210° C. At $T_a = 220^{\circ}$ C, featureless structure is detected from the WAXD and SAXS scattering.

Fig. 2: (a) WAXD intensity profiles of solution-cast Nylon 6 films at selected annealing temperature T_a from 40 to 220°C, (b) SAXS intensity profiles (Lorentz-correccted plot) of the solution-cast film at the corrending T_a .

Solution-cast films possess the α -form crystals with a SAXS peak at 0.0776Å⁻¹ at 40°C. On heating, the two WAXS diffraction peaks (2θ = 20.42, 23.60°) move closer to each other with a gradual reduction of the peak intensity. At 210°C, the two WAXD diffraction peaks are located at 20.89 and 21.81°. At 220°C, all the crystals are melted away and only the amorphous halo $(2\theta=19.84^{\circ})$ is seen. According to the T_a-dependence of SAXS intensity profiles, it is evident that q_{max} remains intact for $T_a < 140^{\circ}C$. For $T_a > 160^{\circ}C$, q_{max} gradually moves to the low q region and simultanesouly the intensity of SAXS peak is also increased until T_a=200°C. At 210°C, a large long period of 164Å is reached but the intensity is reduced due to the occurrence of major crystal melting, as-revealed by WAXD intensity profile. Based on Fig. 2, it is concluded that no $\alpha \rightarrow \gamma$ crystal transformation takes place, but a gradual melting of the α -form crysatls together with the lamelaar thickening occurs during stepwise annealing of the solution-cast Nylon 6 film.