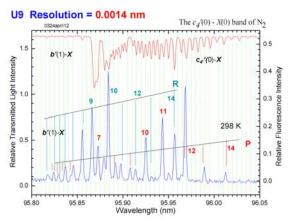
Rotationally Resolved Fluorescence Emissions from the Coupled c₄′(0) and b′(1) States of N₂


C.-Y. R. Wu (吳中榮)¹, J.-I. Lo (羅仁祐)², Y.-C. Lin (林彥璋)², H.-S. Fung (馮學深)³, Y.-Y. Lee (李英裕)³, T.-S. Yih (易台生)², and D. L. Judge¹

¹Space Sciences Center, University of Southern California, Los Angels, USA
²Department of Physics, National Central University, Chungli, Taiwan
³National Synchrotron Radiation Research, Hsinchu, Taiwan

Recently it has been shown theoretically [1] that predissociation and perturbation processes in N₂ involve global interactions among all ${}^{1}\Sigma$, ${}^{1}\Pi$, ${}^{3}\Sigma$, and ${}^{3}\Pi$ states. In addition to the global couplings there exists local accidental rotational perturbation [2]. The case in point, the band origins of the $c_4'(0)$ and b'(1) are only separated by 0.0505 nm [2,3]. The absorption oscillator strength of the c_4' -X (0,0) band is a factor of 14.4 times larger than that of the b'-X (1,0) transition. Because of the strong mixing the weaker b'-X (1,0) transition will borrow intensity from the intensely perturbed c_4 '-X (0,0) transition. It is thus clear that rotationally resolved Jdependent fluorescence production cross-sections and predissociation yields of N₂ are required at various temperatures in order to provide theoretical constraints and applications in modeling planetary atmospheres.

In this work we have obtained ultrahigh-resolution (0.0014 nm) fluorescence excitation spectra (FES) of N₂ in the EUV region using a synchrotron radiation source. To the best of our knowledge this is the first time that an experiment clearly demonstrates FES spectra with a resolving power of $7x10^4$. Specifically, we have carefully investigated the coupled $c_4'(0)$ and b'(1) states. In Fig. 1 the features between absorption (red curve) and FES (blue curve) do not match at all. The absorption features belong to the c_4' -X(0,0) transition while in FES to the b'-X (1,0) transition. The rotational assignments [2] of the latter transition are marked in Fig. 1. The irregularities in line spacing and intensities at P(11), P(12), R(9), and R(10) are evident of accidental rotational perturbation [2,3]. The extremely intense emission rates of those perturbed and adjacent lines in the b'-X (1,0) transition result from intensity borrowing from the much intense c_4' -X (0,0) transition. Spectral perturbation predissociation effects are clearly observed in the FES. We are currently working on the data analysis to deduce the J-dependent predissociation yields and the absolute fluorescence cross-sections.

We plan to further investigate the high-resolution FES at temperatures as low as 78 K and to determine J-dependent predissociation yields for the c_4 '(0), b'(1), and other relevant states of N_2 . The results obtained will be particularly useful in our understanding of N_2 airglow emissions of the Earth, Jupiter, Saturn, Titan, Triton, and Pluto. The relevant atmospheric temperature is ~260-1000 K for Earth, ~170-1000 K for Jupiter, ~140-350 K for Saturn, ~97-200 K for Titan, ~50-100 K for Triton, ~44-100 K for Pluto, and even lower for Uranus and Neptune.

Fig. 1: The FES spectrum produced through photoexcitation of N_2 in the 95.8-96.05 nm region. A N_2 pressure of 0.02 mTorr was used.

References

- [1] B. R. Lewis, S. T. Gibson, W. Zhang, H. Lefebvre-Brion, and J.-M. Robbe, J. Chem. Phys. **122**, 144302 (2005).
- [2] K. Yoshino, D. E. Freeman, and Y. Tanaka, J. Mol. Spectrosc. 76, 153 (1979).
- [3] A. Lofthus and P. H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977).
- [4] C. Y. R. Wu, H.-S. Fung, K. Y. Chang, T. S. Singh, X.-L. Mu, J. B. Nee, S.-Y. Chiang, and D. L. Judge, J. Chem. Phys. 127, 084314 (2007).
- [5] C. Y. R. Wu, H.-S. Fung, K.-Y. Chang, and D. L. Judge, Planet. Space. Sci. 56, 1725 (2008).