
Core-level Anionic Photofragmentation of Gaseous CCl₄ and Solid-state Analogues

K.-T. Lu (盧桂子)¹, J.-M. Chen (陳錦明)¹, J.-M. Lee (李振民)^{1,2}, T.-L. Chou (周大磊)¹, S.-A. Chen (陳興安)¹, S.-C. Haw (何樹智)¹, and T.-H. Chen (陳天豪)¹

¹National Synchrotron Radiation Research Center, Hsinchu, Taiwan ²Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan

The spectral properties of CCl₄ are imperative for its technical importance in the reactive ion etching of microelectronics. CCl₄ and halomethanes adsorbed on single-crystalline surfaces are model systems for studies of surface photochemistry. In this work, we investigated the dissociation dynamics of anionic and excited neutral fragments of gaseous CCl₄ following excitation of Cl 2*p* electrons to various resonances on combining measurements of anionic photodissociation, x-ray absorption, and uv or visible dispersed fluorescence.

Fig. 1: Yields of Cl⁻ anion fragment and excited neutral fragments (C^* and CCl^*) from gaseous CCl_4 following Cl 2p core-level excitation, with the Cl L-edge x-ray absorption spectrum.

Discernible in Fig. 1, the relative intensities of CI yield spectrum and fluorescence excitation spectra of excited neutral fragments (C^* and CCI^*) differ notably from those of Cl L_{23} -edge absorption spectrum of gaseous CCl_4 . Excitations of the Cl 2p electrons to Rydberg orbitals and doubly excited states (absorptions labeled 3' and 4) near the Cl 2p ionization threshold of gaseous CCl_4 enhance both the excited neutral atomic fragments C^* and excited neutral diatomic fragments CCI^* , relative to the ratio of intensity of the corresponding transition to the core-to-valence excitation (absorption labeled 1) in the Cl L_{23} -edge X-ray absorption spectrum. In particular, excitations of Cl 2p electrons to higher Rydberg orbitals near the Cl $2p_{3/2}$ threshold (at ~207 eV) or doubly excited

states (at ~208.2 eV) of gaseous CCl₄ remarkably enhance the production of excited neutral fragments. The Cl⁻ anion is significantly reinforced in the vicinity of the Cl $2p_{1/2,3/2}$ ionization threshold of gaseous CCl₄. The maximum anion enhancement about 207.5 eV is just above the threshold, 206.9 eV, for Cl $2p_{3/2}$ ionization of gaseous CCl₄. The Cl⁻ anion might thus be enhanced by the same dissociation channels that produced the excited neutral fragments.

Shake-up modified resonant Auger decay and PCImediated shake-down near the ionization threshold accordingly produce highly excited ionic Rydberg states, efficiently producing excited neutral fragments, because the wave function of a diffuse Rydberg electron has less overlap with the molecular-ion core; consequently the 2h1e or mhme states dissociate to produce the excitedstate fragments before the excited Rydberg electron can relax. Recapture of a PCI-mediated photoelectron increases the probability of capture by the departing Cl atom during dissociation, and then enhances the Cl⁻ yield near the Cl 2p ionization threshold of gaseous CCl₄. The detection of excited neutral particles and anion fragments is demonstrated to be a sensitive probe for investigating shake-modified resonant Auger decay, doubly excited states embedded in core-shell ionization continua, and PCI dynamics.

The Cl $2p \rightarrow 7a_1^*$ excitation for CCl₄/Si(100) enhances the Cl⁻ desorption yield at a submonolayer level, whereas the Cl⁻ anion is significantly enhanced near the Cl $2p_{1/2,3/2}$ ionization threshold of gaseous CCl₄. The transitions of core electrons to high Rydberg states near Cl 2p ionization thresholds and doubly excited states of gaseous CCl₄ greatly enhance excited neutral fragments (C* and CCl*), originating from shake-modified resonant Auger decay or/and post-collision interaction. The notably enhanced Cl⁻ anion near the Cl $2p_{1/2,3/2}$ ionization threshold of gaseous CCl₄ is affected by PCI-mediated photoelectron recapture. The resonant enhancement of the Cl⁻ yield at the $7a_1^*$ resonance in the Cl 2p edge at a submonolayer level occurs through a formation of highlying molecular-ion states for CCl₄ adsorbed on a Si surface, mediated by polarization induced by the substrate. Our experimental results provide important insight concerning the roles and relative importance of attachment and high-lying dissociative electron molecular-ion states on dissociation dynamics of negative ion for adsorbates on surfaces. These complementary results provide insight into the anionic and excited neutral fragmentations of gaseous molecules and solid-state analogues via core-level excitation.