Adsorption and Thermal Reaction of Short-chain Iodoalkanes on Ge(100)

W.-L. Lee (李威霖), P.-Y. Chuang (莊培佑), T.-F. Teng (鄧宗凡), Y.-H. Lai (賴英煌), and W.-H. Hung (洪偉修)

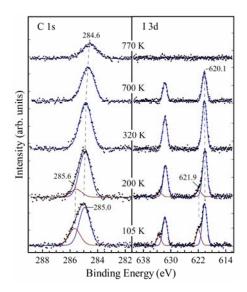
Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan

We applied the thermal evolution of XPS spectra to characterize the variation of surface composition during thermal decomposition of CH₃I and to correlate with TPD results to elucidate the reaction intermediates. Figure 1 shows the C 1s and I 3d_{5/2} spectra for the Ge(100) surface exposed to CH₃I at 105 K for 150 s and subsequently annealed to various temperatures. All XPS spectra were recorded for samples at 105 K after being heated to a desired temperature at a rate less than 1 K/s and cooled immediately on terminating the heating abruptly. The intensities of C 1s at 285.6 eV and I 3d_{5/2} at 621.9 eV due to chemisorbed CH₃I began to attenuate with a similar rate on annealing the sample to 200 K and completely disappeared at 320 K. In contrast, the intensities of features of C 1s at 285.0 eV and I 3d_{5/2} at 620.1 eV increase by ~15%. These spectral changes reveal that chemisorbed CH₃I partially desorbs intact from the surface, corresponding to the desorption maximum of CH₃I at 245 K. The remaining CH₃I dissociates to form additional surface CH₃ and I.

Based on the TPD and XPS data, we summarize the adsorption and decomposition of CH₃I according to the following reactions.

$$1. \ CH_3I_{(g)} \rightarrow CH_3I_{(ad)} \ or \ CH_{3(ad)} + I_{(ad)} \quad 105 \ K$$

2.
$$CH_3I_{(ad)} \rightarrow CH_3I_{(g)}$$
 or $CH_{3(ad)} + I_{(ad)}$ 200-320 K


3.
$$CH_{3(ad)} \rightarrow CH_{3(g)}$$
 670-770 K

$$CH_{3(ad)} + CH_{x(ad)} \rightarrow CH_{4(g)} + CH_{x-1(ad)} (x = 1, 2 \text{ or } 3)$$

$$I_{(ad)} + CH_{x(ad)} \rightarrow HI_{(g)} + CH_{x-1(ad)}$$

$$I_{(ad)}\!\to I_{(g)}$$

The adsorption and thermal decomposition of iodoalkanes CH₃I, C₂H₅I and C₄H₉I on Ge(100) were studied with temperature-programmed desorption (TPD) and X-ray photoelectron spectra (XPS) using synchrotron radiation. At 105 K, the iodoalkanes adsorb both molecularly and dissociatively on Ge(100); the shorterchain iodoalkane dissociates to form a surface alkyl and an I adatom to a greater extent. The chemisorbed iodoalkane gradually dissociates to form a surface alkyl and an I adatom in a temperature range 200-370 K. At 720 K, most surface CH₃ desorbs directly from the surface, and other surface CH3 radicals undergo disproportionation to desorb as CH₄. Surface C₂H₅ and C₄H₉ mostly undergo -hydride elimination to desorb as C_2H_4 and C_4H_8 at ~550 K, respectively. The temperature for C₄H₉ to react is slightly lower than that for C₂H₅ because the C₄H₉ chain exhibits a stronger interaction with the surface than C₂H₅. The I adatom can react with a H atom liberated during decomposition of a surface alkyl and subsequently desorbs as molecular HI in two temperature regimes, ~650 and ~720 K. Some I adatoms are removed from the surface via direct desorption in atomic form at 720 K. On annealing to 770 K, the Ge surface becomes free of I adatom but retains a deposit of residual C as adatoms. According to our data, the temperature of fabrication and operation of a Ge-based device with the alkyl monolayer is suggested to be not higher than 530 K.

Fig. 1: XPS spectra of C 1s and I 3d for a Ge(100) surface exposed to CH₃I for 150 s at 105 K and subsequently heated to indicated temperatures.

Reference

[1] P. Y. Chuang, W. L., Lee, T. F. Teng, Y. H. Lai, and W. H. Hung, J. Phys. Chem. C **113**, 17447 (2009).