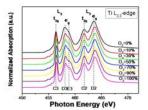
XANES Investigation of the Electronic Structures of Sputter-deposited TiO₂ Nanowires


Y.-M. Chang (張裕銘)

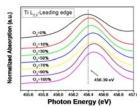

Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan

Figure 1 compares the Ti L_{2,3}-edge XANES spectra of sputter-deposited TiO2 nanowires obtained at different oxygen contents. The positions of the peaks in the Ti L_{2,3}-edge XANES spectra of Fig. 1 (A) are summarized in Table 1. Due to the thickness limitation of our samples, all of the Ti L_{2,3}-edge XANES spectra were recorded in the total electron yield mode for Ti 2p absorption. Compared to the fluorescence yield mode, the total electron yield mode is more surface sensitive and therefore better suited when structural information from the surface of the samples is sought. In general, the Ti L_{2,3}-edge XANES spectra, characterized by low intrinsic broadening and better energy resolution in comparison to Ti K-edge, provide detailed information about the local Ti bonding configuration and medium-range effects. Therefore, the inspection of the Ti L_{2,3}-edge gives complementary data to those obtained from the Ti K preedge features about the Ti environment and the particular electronic properties of Ti compounds [1]. As shown in Fig. 1 (A), the Ti L_{2,3}-edge XANES spectra for all the samples are split into two sets of peaks between 450 and 472 eV, labeled as L₃ and L₂ edges, separated by ~5.3 eV, due to the spin-orbit coupling of Ti 2p core electrons, which are corresponded to the electronic transitions from the $2p_{3/2}$ (L_3 -edge) and $2p_{1/2}$ (L_2 -edge) core levels to a 3d excited state of Ti atoms ^[2]. For both L_3 and L_2 edges, the crystal field splits the 3d state of Ti into t_{2g} (formed by d_{xy} , d_{xz} and d_{yz} orbitals) and e_g (formed by $d_{x^2-y^2}$ and d_{z^2} orbitals) subands in the octahedral symmetry, each L feature reveals two contributions C3 (C2) and D3 (D2), respectively. Moreover, de Groot et al. [3] reported that the L2-edge features are broader than those of L3edge originated from a shorter lifetime of the 2p_{1/2} core holes due to a radiationless electron transition from the $2p_{3/2}$ to the $2p_{1/2}$ levels, accompanying by the promotion of a valence electron into the conduction band; while an addition or an asymmetry splitting in the eg peak (E3 and E2) has been attributed to the distortions from octahedral symmetry. The different relative intensity between D3 and E3 peaks indicates different distortions of the local coordination environment, which can be use to distinguish between anatase and rutile TiO₂ polymorphs, i.e. the TiO₂ anatase phase gives of D3>E3, while the TiO_2 rutile phase gives of D3<E3.

We observed that with the increase of oxygen contents from 0% to 100%, the shoulder of e_g band in L_3 edge, i.e. E3 peak, becomes resolved, indicating that the oxygen can give rise to the long-range ordering in the anatase TiO₂ structure. The leading edge of the Ti $L_{2,3}$ -edge XANES spectra located between 455.5 and 457.0 eV is shown in Fig. 1 (B). The peak in general shifts to slightly higher absorption energy with the oxygen contents, relative to the sample obtained in pure Ar

atmosphere. However, the peak shift behavior makes no difference between O₂=50% and O₂=70%, as well as between O₂=90% and O₂=100%. This result is attributed to the fact that surface oxygen vacancies often associated with ion bombardment during the sputter deposition process, leading to the change of stoichiometric TiO₂ in the near-surface region. V.S. Lusvardi et al. [2] demonstrated an investigation of XANES spectra for TiO₂ which exhibited a peak shift with the increase of the oxidation state of titanium. In other words, an L-edge peak of titanium shifts to higher absorption energy and a K-edge peak of oxygen shifts to the lower absorption energy. Y. Kim et al. [4] demonstrated that the number of oxygen vacancies can be reduced in the O2-plasma treated TiO₂ films. In our case, with the increase of oxygen contents, the result leads to increase probability to filling the oxygen vacancies, i.e. increasing the oxidation state of the titanium. Consequently, the surface of the TiO₂ nanowires becomes more stoichiometric with the introduction of oxygen contents, as compared to the sample obtained in pure Ar atmosphere.

Fig. 1: XANES spectra of (A) Ti $L_{2,3}$ -edge, and (B) Ti $L_{2,3}$ -leading edge of sputter-deposited TiO₂ nanowires obtained at different oxygen contents.

Table 1: Positions of the peaks in the Ti $L_{2,3}$ -edge XANES spectra of Fig. 1 (A). unit: eV

sample	A	В	\triangle_{BA}	C	D
O ₂ =0%	530.77	533.20	2.43	539.14	543.36
O ₂ =10%	530.66	533.30	2.64	538.99	544.08
O ₂ =30%	530.72	533.34	2.62	539.12	544.12
O ₂ =50%	530.71	533.34	2.63	539.10	544.10
O ₂ =70%	530.71	533.39	2.68	539.15	544.11
O ₂ =90%	530.66	533.27	2.61	538.97	544.06
O ₂ =100%	530.70	533.30	2.60	539.10	544.10

 \triangle_{BA} represents the energy difference between A and B peaks.