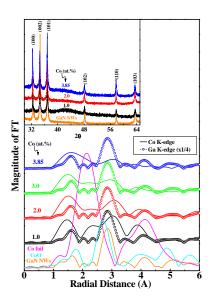
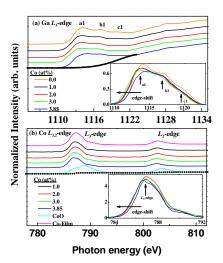
Electronic-magnetic Properties and Electron-phonon Coupling in Co-doped N-GaN Nanowires


H.-M. Tsai (蔡煌銘)¹, C.-W. Pao (包志文)², P.-J. Huang (黃秉榮)^{3,4}, K.-H. Chen (陳貴賢)^{4,5}, L.-C. Lin (林麗瓊)⁴, G.-C. Chi (紀國鐘)³, and W.-F. Pong (彭維鋒)¹

¹Department of Physics, Tamkang University, Taipei, Taiwan ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan ³Department of Physics, National Central University, Chungli, Taiwan ⁴Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan ⁵Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan


The electronic properties of Co-doped GaN nanowires (NWs) were studied using x-ray absorption spectroscopy. Ga L_3 -/K-, Co L_3 -/K-, and N K-edge XANES were obtained at the National Synchrotron Radiation Research Center. The samples that were used are grown by vapor-liquid-solid (VLS) technique and have (001) oriented n-GaN NWs with 3-5 μ m length and an average diameter of 80 nm and hence low energy implantation were performed with 0 – 3.85 at% cobalt in the n-GaN NWs.

Typical structural and morphological studies of the pristine GaN NWs and Co-doped GaN NWs are shown in Fig.1. The x-ray diffraction pattern of the pristine GaN NWs and Co-doped GaN NWs are similar features having similar diffraction peaks (inset in Fig. 1) indicating the structural behavior remains unchanged. Figure 1 also displays the Fourier transform (FT) of Ga and Co K-edge EXAFS k^3 data of GaN NWs, Co-doped GaN NWs along with references CoO and Co-foil. It reveals that the general line-shape and the radial distribution of the FT spectra of Co-doped GaN NWs are not identical and even not coincide to their peak positions with those of the pure GaN NWs, Co-foil and CoO that demonstrates the local atomic structures of Ga atoms in GaN NWs are dissimilar to GaN NWs. Notably, the intensities of the first two main peaks at ~1.60 Å and ~2.85 Å in the FT spectra, corresponding to the nearest-neighbor (NN) Ga-Co bond lengths, increases with Co-doping and are larger than the GaN NWs.

Figure 2 (a) and 2 (b) show Ga L_3 - and Co $L_{3,2}$ -edge XANES spectra of GaN and Co-doped GaN NWs. Features A₁ (1114 eV), B₁ (1116 eV) and C1 (1118 eV) in Fig. 2 (a) are associated with the transition of Ga 4sand a mixture of Ga 4s and 4d states. The inset at the bottom of Fig. 2(a) is a magnified view of the near-edge features after the background has been subtracted using a best-fitted Gaussian curve indicated by the dotted line. The overall intensities of features A₁–C₁ decrease as the concentration of Co increases, indicating that the number of unoccupied GaN 4sd states near the conduction-band minimum is reduced. In contrast, the intensity of Co $L_{3,2}$ -edges are increase with increase of Co-doping indicating the number of Co 3d unoccupied states increases as shown in the Fig. 2(b) after the background has been subtracted using a best-fitted arc-tan curve indicated by the dotted line. The absorption edge is also observed to be shifted slightly towards lower energy side in both Ga as well as Co L_3 -edge XANES spectra as the Co-concentrations are increases in the GaN NWs. It is noted to be that there is an anomalous edge-shift is observed at higher energy side in Ga L_3 -edge and overall intensity decrease in Co L_3 -edge XANES spectra respectively for the 3.85 at% Co-doped GaN NWs. This may be due to formation of Co-cluster in the GaN NWs structure matrix rather than proper doping and hence anomalous changes occurs.

Fig. 1: XRD and EXAFS spectra **Fig. 2:** Normalized (a) Ga L_3 -edge and (b) Co $L_{3,2}$ -edge XANES spectra

