
EXAFS Study of the Local Structure FeTiTaO $_6$ and Fe(Ti $_{0.8}M_{0.2}$)TaO $_6$ (M= Zr, V) Systems Based on the Rutile Structure

J.-W. Mi (宓君緯)¹, S.-Y. Wu (吳勝允)¹, T.-S. Chan (詹丁山)², and J.-F. Lee (李志甫)²

¹Department of Physics, National Dong Hwa University, Hualien, Taiwan ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan

It is well known that transition metal oxides with d^0 electronic configuration undergo a second-order Jahn-Teller distortion of the MO_6 (M = metal) octahedra arising from a mixing of empty d^0 states of the transition metal with the O 2p states. The distortion seems to be at the heart of several of the interesting dielectric/ ferroelectric properties of d^0 transition metal containing perovskite oxides such as PbTiO₃, BaTiO₃, PbZr_{1-x}Ti_xO₃, and Pb₃MgNb₂O₉. Recently, Mani and co-workers has been report that FeTiTaO₆ rutile structure have relaxor ferroelectric behavior with transition temperature around 550 K. Thus, in this study, the authors dope Zr (Group IV-b) and V (Group V-b) to Ti (Group IV-b) site in FeTiTaO₆, and making sample chemical formula of $Fe(Ti_{0.8}M_{0.2})TaO_6$ (M = Zr, V). By doping different group element to Ti site, we believes it will change electronic configuration of d-orbital state, and may affect the local structure of these samples. Fe(Ti_{0.8}M_{0.2})TaO₆ (M = Zr, V) samples were synthesized by solid-state reaction using Fe₂O₃, TiO₂, ZrO₂, V₂O₅ and Ta₂O₅ as raw materials. Stoichiometric homogeneous mixtures of highly pure raw materials were obtained by thorough grinding. The mixture was calcined in air at 1300°C for 24 hours. The Ti K-edge extended X-ray absorption fine structure spectra (EXAFS) were recorded in fluorescence mode for synthesized powders mounted on a Scotch tape at a beam line BL17C.

Fig. 1 (a), (b) and (c) show the Fourier transforms of the k^3 -weighted Ti K-edge EXAFS spectra of $FeTiTaO_6$, $Fe(Ti_{0.8}Zr_{0.2})TaO_6$ and $Fe(Ti_{0.8}V_{0.2})TaO_6$. respectively. The data range taken for transformation is from 3.81 to 10.67 Å⁻¹. Structure parameters were obtained from fitting in R-space in the interval of 0.839~2.086 Å. The solid lines and empty cicles represent the experimental and fitting data. The first prominent peak in the FT spectra is assigned to the Ti-O contribution. The bond length between coordination number, Debye-Waller factor and EXAFS fitting parameter are listed in Table 1. As see from Table 1, all of the Ti-O bond length of Fe(Ti_{0.8}Zr_{0.2})TaO₆ sample is bigger than that of FeTiTaO₆. Moreover, the Ti-O bond length of Fe(Ti_{0.8}V_{0.2})TaO₆ sample is smaller than that of FeTiTaO_{6.} According to our XANES analysis, we found that the valance states is Ti⁴⁺, Zr⁴⁺ V^{4+} and V^{4+} in FeTiTaO₆, Fe(Ti_{0.8}Zr_{0.2})TaO₆ and Fe(Ti_{0.8}V_{0.2})TaO₆ samples. Thus, the above EXAFS results can be explained by substitution of bigger size Zr^{4+} [0.72 Å for CN (coordination number) = 6] and smaller V^{4+} ions (0.58Å for CN = 6) in the Ti^{4+} site (0.605 Å for CN = 6), respectively. Moreover, it is noted that Debye-Wall factor for Fe(Ti_{0.8}V_{0.2})TaO₆ sample is bigger than other samples. The results indicate that TiO₆ octahedral in $Fe(Ti_{0.8}V_{0.2})TaO_6$ sample is more disorder.

Fig. 1: (a), (b) and (c) shows the Fourier transforms of the k^3 -weighted Ti K-edge EXAFS sapectra of FeTiTaO₆, Fe(Ti_{0.8}Zr_{0.2})TaO₆ and Fe(Ti_{0.8}V_{0.2})TaO₆, respectively

Table. 1: The EXAFS fitting parameters of FeTiTaO₆, Fe($Ti_{0.8}Zr_{0.2}$)TaO₆ and Fe($Ti_{0.8}V_{0.2}$)TaO₆ samples.

Sample	k space range (Å-1) [3.81,10.67]		Bound length (Å)	Coordination number (N)	Debye-Waller factor (σ²)
FeTiTaO ₆	R space range (Å) [0.957,1.994]	Ti-O	1.876(0)	3.22(8)	0.009(2)
V=57.126	r-factor fitting 0.011(9)	Ti-O	2.029(7)	1.61(4)	0.009(7)
Fe(Ti _{0.8} Zr _{0.2})TaO ₆	R space range (Å) [0.977,2.086]	Ti-O	1.924(8)	3.27(2)	0.009(2)
V=61.775	r-factor fitting 0.006(6)	Ti-O	2.086(1)	1.63(6)	0.009(7)
Fe(Ti _{0.8} V _{0.2})TaO ₆	R space range (Å) [0.839,2.038]	Ti-O	1.912(5)	3.08(0)	0.010(7)
V=56.152	r-factor fitting 0.043(3)	Ti-O	1.920(4)	1.54(0)	0.011(2)