The Delayed Structural Transformation for the LiFePO₄/C during Charging and Discharging at a Lower Rate

Tien-Yu Lai (賴恬郁) and Jeng-Gong Duh (杜正恭)

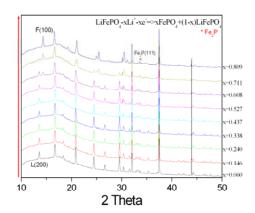
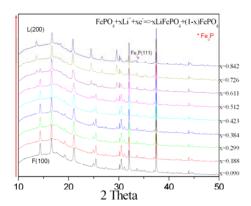

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan

Figure 1 describes the in-situ synchrotron X-ray diffraction patterns of the LiFePO₄/C synthesized at 800°C during charge and discharge at 0.25C. The reflection peaks, associated with the Fe₂P impurities as the inactive material, were exhibited at 33.6°. The LiFePO₄/C synthesized at 800°C had lower discharging capacity of 135 mAh/g than that synthesized at 750 °C at the rate of 0.25C. The lower discharging capacity was affected by a large amount of the Fe₂P impurities. The negative effect of Fe₂P is not yet well known, nevertheless, Song et al. inferred that the formed Fe₂P above the critical concentration disrupted the onedimensional Li+ pathways followed by hindraning Li+ transport [1]. However, the LiFePO₄/C synthesized at 800°C presented a normal structural transformation process, which was due to the existence of Fe₂P impurities. The impure Fe₂P phase with metallic conductivity of 1.5 S cm⁻¹ significantly improved the electronic conductivity of the LiFePO₄ from 10^{-9} to 10^{-3} S cm⁻¹ [2]. The Fe₂P particles might play an important role in affecting the nucleation sites. According to the above-mentioned arguments, the produced Fe₂P phase would disturb the structure of the LiFePO₄. It was reported that the transportation of Li ions took place near the phase boundary through supplying the activation energy for nucleation [3]. Therefore, the disordered structure, resulted from the Fe₂P phase, possessed more regions with higher energy to stimulate the intercalation and deintercalation of Li ions. Furthermore, the enhanced electronic conductivity of Fe_2P also improved the electron flow to speed the phase transformation.


References

- [1] M.-S. Song, D.-Y. Kim, Y.-M. Kang, Y.-I. Kim, J.-Y. Lee, and H.-S. Kwon, J. Power Sources **180**, 546 (2008).
- [2] Y. Xu, Y. Lu, L. Yan, Z. Yang, and R. Yang, J. Power Sources 160, 570 (2006).
- [3] C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill, Nature mater. **7**, (2008).

(a)

(b)

Fig. 1: In-situ X-ray diffraction patterns of LiFePO₄/C synthesized at 800° C (a) charge and (b) discharge at 0.25C (λ =1.334 Å). The subscripts L and F represent reflections of LiFePO₄ and FePO₄ structures.