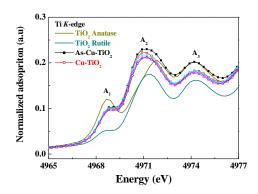
## XANES Study of Local Structures of Ti Species in the CuO/TiO<sub>2</sub>


S.-M. Chang (張淑閔)<sup>1</sup>, T.-S. Chan (詹丁山)<sup>2</sup>, and Y.-Y. Hsu (胥穎亞)<sup>1</sup>

## <sup>1</sup>Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan <sup>2</sup>National Synchrotron Radiation Research Center, Hsinchu, Taiwan

Phosphine ( $PH_3$ ) is one of commonly used dopant gases in semiconductor industries.  $PH_3$  is highly toxic and causes human death immediately at 300 ppm or after exposure at 0.3 ppm for 8 hours a day for one week. Therefore, development of promising adsorbents to effectively remove  $PH_3$  attracts large attention.

In this study, we incorporated Cu<sup>2+</sup> into TiO<sub>2</sub> matrix using sol-gel method and found high removal capacities for PH<sub>3</sub>. The capture of PH<sub>3</sub> by CuO/TiO<sub>2</sub> is proposed to involve with transformation of PH3 to phosphate according FTIR analysis. Dissociative chemisorption of PH<sub>3</sub> on the copper accompanied with rearrangement of surface hydroxyl groups and dehydrogenation firstly results in Cu-P=O species. Then, the Cu-P=O species gradually transforms to H<sub>3</sub>PO<sub>4</sub> by sequential reaction with water in conjunction with dehydrogenation. The Xray absorption spectroscopy (XAS) using synchrotron radiation is a powerful technique to investigate the structural and electronic properties of the X-ray absorbing atom and about its local environment. In this report, the effects of chemisorption of PH3 on CuO and transformation to phosphate species with hydroxyl groups on TiO2 surface have been studied by X-ray absorption near edge structure (XANES) technique. The Ti K-edge X-ray absorption spectroscopy (XAS) spectra were carried out at beam-line 16A1.

Figure 1 shows the pre-edge of Ti K-edge XANES spectra of anatase and rutile  $TiO_2$  standard and the  $Cu/TiO_2$  obtained as-prepared and after base treatment. The pre-edge structure of  $TiO_2$  contained three characteristic absorptions, which were named as A1, A2, and A3. A1 reprented as an exciton band absorption, while A2 and A3 were assigned to the electron transition from 1s to  $t_{2g}$  and  $e_g$  3d degenerate states, respectively. The As-Cu/TiO<sub>2</sub> exhibited higher intensity in the A2 peak relative to the sample after base treatment, indicating that the As-Cu/TiO<sub>2</sub> materials had more distorted octahedral  $TiO_6$  unit.



**Fig. 1:** Pre-edge of As-Cu/TiO<sub>2</sub>, Cu/TiO<sub>2</sub>, anatase and rutile TiO<sub>2</sub>.

Figure 2 shows the pre-edge of Ti *K*-edge XANES spectra of the Cu/TiO<sub>2</sub> after adsorption of PH<sub>3</sub> in the N<sub>2</sub> and in the humic air. No matter the adsorption underwent in the inert or humic conditions, similar absorption features were observed in the Cu/TiO<sub>2</sub> samples. Comapred to *K*-edge XANES spectrum of the fresh Cu/TiO<sub>2</sub>, the A2 absorption slightly decreased after adsorption of PH<sub>3</sub>. Since the Cu<sup>2+</sup> was reduced to Cu<sup>+</sup> after binding with PH<sub>3</sub>, the electron density around Ti<sup>4+</sup> centers increased. This led electron transition from 1s to 3d states more difficult. The changes in the electronic structures of Ti<sup>4+</sup> ions clearly proved that the PH<sub>3</sub> was chemisorbed on the Cu<sup>2+</sup> centers in the beginning and then converted into phosphate species after exposure of H<sub>2</sub>O.

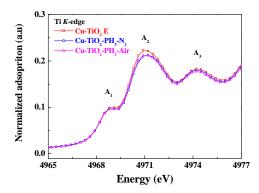



Fig. 2: Pre-edge of the  $Cu/TiO_2$  after adsorption of  $PH_3$  in  $N_2$  and in the humic air.