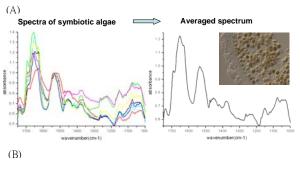
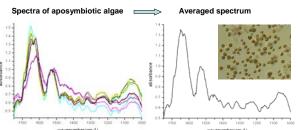
Identification of Endosymbiosis-related Molecules in Cnidaria-dinoflagellate Association by Utilizing Synchrotron Radiation-based Infrared Microspectroscopy (SR-IMS)


Shao-En Peng (彭紹恩)^{1,2}, Huai-Ting Huang (黃懷葶)¹, Pei-Yu Huang (黃佩瑜)³, Yao-Chang Lee (李耀昌)³, and Chii-Shiarng Chen (陳啟祥)^{1,2}


¹Institute of Marine Biotechnology, National Dong Hwa University, Hualien, Taiwan ²Department of Planning and Research,

National Museum of Marine Biology and Aquarium, Pingtung, Taiwan ³National Synchrotron Radiation Research Center, Hsinchu, Taiwan

Endosymbiosis in cnidaria-dinoflagellate association plays critical role in regulating productivity of corals and related marine ecosystems. Cellular endosymbiosis with dinoflagellate *Symbiodinium spp*. (i.e. the symbiont or "zooxanthellae" in generic name) in corals (i.e. the host) is initiated by the internalization of symbionts via phagocytic process into host endoderm cells. However, the mechanism by which the symbiont is able to reside inside the host cell and establish an obligatory and mutualistic association remain unclear after four decades of investigation.

Based on the advantages of synchrotron-radiation-based microscopy, we will investigate the endosymbiotic association within coral tissue utilizing chemically resolved synchrotron-radiation-based infrared microspectroscopy (SR-IMS). By focusing on individual cellular activities as identified by SR-IMS, we detected and compared the chemical composition of symbiotic and aposymbiotic dinoflagellate by SR-IMS to explore the molecular mechanism of endosymbiosis.

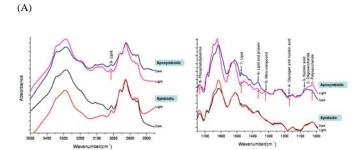


Fig. 1: IR spectra of (A) symbiotic and (B) aposymbiotic dinoflagellate (*Symbiodinium* spp.). The spectra are further averaged (~8 repeats) and normalized in the amide II band (1535 cm⁻¹). The image of symbiotic or aposymbiotic dinoflagellate also demonstrated.

We detected and obatined the spectra with ~ 8 repeats that prepared from symbiotic or aposymbiotic dinoflagellate (Fig. 1). Then, we compared the differenc of the spectra. According the observed spectrum, we interprete the possible biological molecules that contribute the specific spectum (Fig. 2).

The preliminary results of SR-IMS revealed that the chemical composition within dinoflatellate were different at symbiotic or aposymbiotic (free living) state, especially the glycogen, nitro-compound, lipid and phospholipids. These results also provided more evidences to demonstrate the specific regulation especially on lipid, glycogen, and nitrogen metabolism in cnidarian-dinoflagellate endosymbiosis.

No	Observed spectrum (cm ⁻¹)	Frequency range	Assignment	Biological molecule	Ratio of peak area	
					Symbiotic/Aposymbiotic (Light)	Light Dark (Aposymbiotic
1	1022	1160-970 1039-1021 1040-930	Polysuccharde backbones C - C symmetric stretching, CO symmetric stretching, C - OH bending P - O stretching	Polysaccharide Hosphons compounds	2.2(↑)	0.9 (-)
2	1045	1042 1049 1050	C-O stretching C-O stretching Symmetric P-O-H stretching	Oligosaccharides Glucoses Phophons corposals	1.15(-)	0.8(-)
3	1070	1080	PCQ- symmetric stretching CO-O-C asymmetric and symmetric shetching	Nucleic acids and phospholipids Lipids	1.16(-)	0.51(\)
4	1170	1176 1170 1173 1316-1140 1316-1340	CO—O—C asymmetric stretching CO—O—C asymmetric stretching and symmetric stretching CO—O—C asymmetric stretching F — O stretching Anomatic F — O—C stretching	Glacoses and nucleic acids Lipids Phosphorus compounds Phosphorus compounds	3.3(↑)	0.48(↓)
5	1322	1330-1200	55% NH in-plane bending, 19% CC stretching, 15% CN stretching, 11% CO in-plane bending 55% NH in-plane bending, 19% CC stretching, 15% CN stretching, 11% CO in-plane bending N=O stretching	Amide II Amide II Nero-compounds	0.1(↓)	6.24(↑)
6	1370	1400-1370	COO symmetric stretching and CH, symmetric bending	Lipid and protein	2.6(↑)	0.26(1)
7	1475	1473 1570-1458	CH ₃ scinoring (ridinic) N=O synthing	Lipid Nitro-compounds	0.97 (-)	0.56(\(\)
8	1733		C = O stretching C = O syntaments stretching	Phosphatidylverine Lipids	1.7(↑)	1.17(-)
9	3012	3012	Olefinic - CH stretching	Unsurated lipid, cholesterol ester	4(1)	0.9(-)

Fig. 2: Comparism of the IR spectra of symbiotic and aposymbiotic (free-living) dinoflagellate (*Symbiodinium* spp.). (A) the IR spectra of Free-living and freshly isolated dinoflagellate. (B) Tentative assignment of the different bands frequently found in symbiotic or aposymbiotic dinoflagellate.

(B)