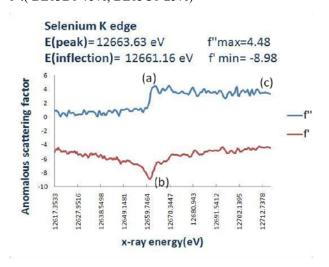

X-ray Crystallographic Study of Helicobacter pylori Shikimate Dehydrogenase

Wen-Ching Wang (王雯靜)12, Wen-Chi Cheng (鄭文琦)12, and Shuang-Chih Lin (林雙志)12


¹Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan ²Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan

TOPIC I. X-ray crystallographic study of Shikimate Dehydrogenase from *Helicobacter pylori*

Shikimate pathway is responsible biosynthesis of aromatic amino acids and aromatic compounds. This pathway is unique that it is conserved in bacteria, fungi, apicomplexan parasites and plants but absent in mammals. Deletion the genes of shikimate pathway in microbes will result in a reduced virulence. Glyphosate that inhibits the 5-enolpyruvylshikimate 3pholphate synthase, the sixth enzyme in this pathway, is a worldwide-used herbicide. Thus, enzymes of shikimate pathway represent potential valid targets for new antibiotics design. Shikimate dehydrogenase 1.1.1.25, SDH) that catalyzes the reduction of 3dehydroshikimate to shikimate by NADPH is the fourth enzyme in the shikimate pathway. In this work, we expressed and purified SDH from Helicobacter pylori. The apo-form HpSDH structure has been solved to 1.57 Å using single-wavelength anomalous dispersion methods, showing an N-terminal α/β domain and a Cterminal Rossmann domain. Additionally, we have also determined two complex structures: HpSDH•shikimate complex (1.42 Å) and HpSDH•shikimate•NADPH (2.04 Å). These complex structures demonstrate that shikimate binds to the N-terminal domain, while NADPH binds to the Rossmann-fold domain.

Fig. 1: A. Diffraction pattern of apo-HpSDH at 0°. B. Diffraction pattern of HpSDH•shikimate at 0°. C. Diffraction pattern of HpSDH•shikimate•NADPH at 0°. (BL13B1-75%, BL13C1-25%)

Fig. 2: Selenium absorption edge in the selenomethionine crystal.