Transport, Magnetization and XAS Study of Ca Doped BaNi_xCo_{1-x}S_{2-y}

H.-H. Hsieh (謝輝煌)¹, M.-H. Lin (林孟祥)¹, G.-T. Hung (黃國宗)², Y.-J. Lei (雷昀叡)², H.-J. Lin (林宏基)³, C.-T. Chen (陳建德)³, H.-F. Huang (黃輝峰)⁴, M.-D. Lan (藍明德)⁴, and F.-Z. Chien (錢凡之)²

¹Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan
²Department of Physics, Tamkang University, Taipei, Taiwan
³National Synchrotron Radiation Research Center, Hsinchu, Taiwan
⁴Department of Physics, National Chung Hsing University, Taichung, Taiwan

 $BaCo_{1-X}Ni_XS_{2-y}$ is one kind of layer compound with metal-insulator transition. The transition temperature varied in hundred Kevin range depends on Ni and S concentration. Here is the first report as we know in the world to make Ca doped $BaCo_{0.9}Ni_{0.1}S_{1.97}$ successful. The bulk samples were prepared specially by vacuum procedure. This new sulfide compounds have Metal-Semiconductor transition at high temperature as shown in Fig. 1 and 2. The result show the transition temperature, magnetization, and resistance can be controlled by Ca concentration.

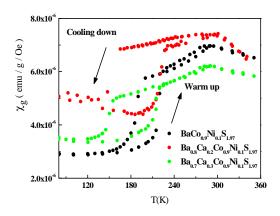


Fig. 1: Magnetization of Ca doped BaCo_{0.9}Ni_{0.1}S_{1.97}

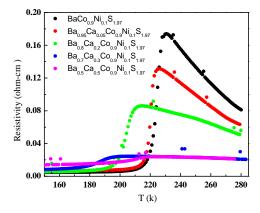
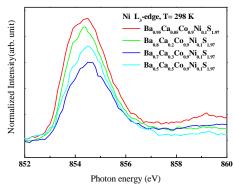
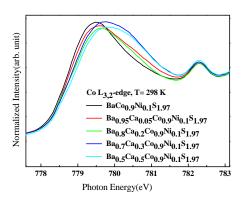




Fig. 2: Resistivity of Ca doped BaCo_{0.9}Ni_{0.1}S_{1.97}

Fig. 3: Ni L_3 edge XAS of Ca doped BaCo_{0.9}Ni_{0.1}S_{1.97}

Co and Ni L3-edge x-ray absorption spectrum (XAS) measurement with electron yield were carried out at the 11A dragon beamline of NSRRC in Taiwan. Both show the white line shape and peak energy shift to high energy with Ca concentration. The more splitting of e_g - t_{2g} orbital indicated the increasing of crystal field due to the Co2+/Ni2+ ion local structure distortion by Ca doping.

Fig. 4: Co L_3 edge XAS of Ca doped BaCo_{0.9}Ni_{0.1}S_{1.97}

Summary:

Here is the first report as we know in the world to make Ca doped $BaCo_{0.9}Ni_{0.1}S_{1.97}$ successful. The transition temperature can be controlled by Ca doping in hundred Kevin range. As the follow XAS spectrum we measured. We proved the valence electron redistribution between 3d orbital as expected by Ca doping.