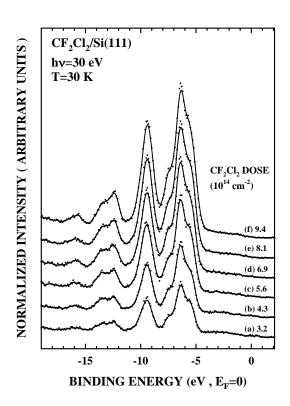

PES Studies Using Synchrotron Radiation: CF₂Cl₂/Si(111) 7x7

Ching-Rong Wen (溫清榕), Shing-Kuen Wang (王興焜), Wei-Chan Tsai (蔡瑋展), and Tzu-Ming Ho (何子鳴)


Department of Physics, National Cheng Kung University, Tainan, Taiwan

The adsorbed CF₂Cl₂ on Si(111)-7×7 surface at 30 K was studied by photoelectron spectroscopy (PES). The photoemission data was collected using synchrotron radiation at NSRRC SEYA beam line. Fig. 1 and Fig. 2 showed the series of coverage-dependence photoelectron spectra using 30 eV monochromatic photons. These series of photoemission spectra indicate that there is a dramatic change in the spectra as a result of gas exposure. The intensities of all peaks increase and the relative intensity and peak position have no change with coverage.

Due to the fact that the valence-level photoelectron spectrum of $CF_2Cl_2/Si(111)$ is similar to the gas phase spectrum, the adsorption of CF_2Cl_2 on the Si(111) 7x7 surface is physisoption. The series of coverage-dependence photoelectron spectra shows that the method of CF_2Cl_2 coverage adsorbed on Si(111) 7x7 was layer-by-layer growth.

Figure 1. Series of valence-level photoelectron spectra of CF_2Cl_2 adsorbed on Si(111)-7x7 at 30 K as a function of gas exposure using 30 eV photons. The total gas exposure for each spectrum is given in units of 10^{14} molecules/cm² and shown on the left of the figure.

Figure 2. Series of valence-level photoelectron spectra (which extends the series of Fig. 1) of CF_2Cl_2 adsorbed on Si(111)-7x7 at 30 K as a function of gas exposure using 30 eV photons The total gas exposure for each spectrum is given in units of 10^{14} molecules/cm² and shown on the left of the figure.