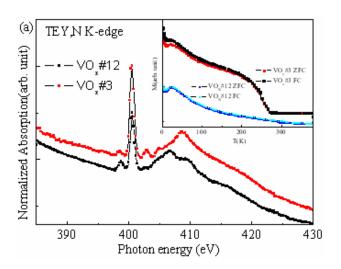
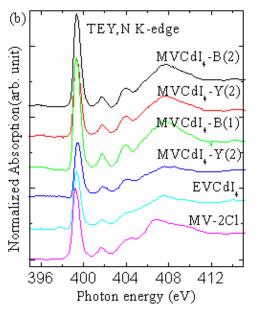

Electronic Structure of VO_x[C_pN_qH_r]_n Nanowires

C.-L. Chan (詹承濂)¹, J.-L. Her (何金龍)¹, C.-P. Sun (孫家彬)¹, C.-L. Huang (黃建龍)¹, C.-C. Chou (周志杰)¹, H.-D. Yang (楊弘敦)¹, C.-L. Yang (楊家榮)², L.-L. Li (李陸玲)², and K.-J. Lin (林寬鋸)²


¹Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan ²Department of Chemistry, National Chung Hsing University, Taichung, Taiwan


Room temperature ferromagnetic nanotubes are synthesized and controlled by electron and hole doping in $2004[1].\ VO_x[C_pN_qH_r]_n$ are nano-scale fibers with stratiform structure. The x-ray absorption spectroscopy (XAS) could provide the local electronic structure of specific element. Here we measure the K-edge of oxygen and nitrogen and L-edge of vanadium to study the magnetic mechanism in between vanadium fiber and the precursor, Viologen. The samples could be synthesized by hydrothermal method precisely.

In FIG. 1, we perform a MCD measure on this vanadium fiber sample to check whether the ferromagnetic interaction exists or not. It is clear to see that obvious difference of peak intensity on vanadium L-edge and oxygen K-edge when different polarized lights. It could support the existence of different population on the spin polarized density. Moreover, we also perform K-edge of nitrogen to check the possibility of magnetic exchange through ligend in (a) of Fig.2. Based on the result of magnetization data, we find C_pN_qH_r(Methyl Viologen, MV) which has magnetic hysteresis loop at room temperature, while MVCdI₄-Y(2), EVCdI₄ and MV-2Cl don't. However, the absorption spectrum of different Viologen series is not very different. Based on all the absorption result of different edge, we have observed some features on the various series. It needs more investigation on these peculiar materials.

Figure 1. L-edge of Vanadium and K-edge of Oxygen in VOx[CpNqHr]n

Figure 2. (a) The temperature-dependent magnetization of $V_2O_5\#3$ and $V_2O_5\#12$ in the inside; K-edge of Nitrogen in VOx[CpNqHr]n; (b) K-edge of Nitrogen in Viologen; MV(Methyl Viologen); EV(Ethyl Viologen)

Reference

[1] L. Krusin-Elbaum, D. M. Newns, H. Zeng, V. Derycke, J. Z. Sun & R. Sandstrom, Nature **431**, 672 (2004).