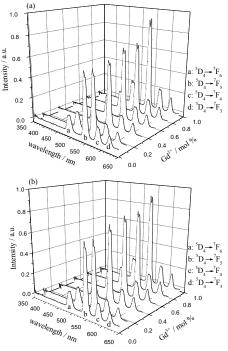

Luminescence of the Green-Emitting Ca(La,Gd)₄(SiO₄)₃O:Tb³⁺ Phosphors with VUV Excitation

Chia-Chin Wu (吳佳蓁)¹, Bing-Ming Cheng (鄭炳銘)², and Teng-Ming Chen (陳登銘)¹

¹Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan

We have investigated the synthesis, VUV photoluminescence spectra, optical properties, and chromaticity of hexagonal $Ca(La_{1\text{-}x\text{-}y}Tb_xGd_y)_4Si_3O_{13}$ phosphors by using synchrotron radiation in the VUV spectral range. The VUV PLE and PL spectra and the correlation among VUV PL intensity, λ_{em} , and Tb^{3^+} and Gd^{3^+} -content have been established.


To investigate the VUV luminescence performance, we have measured the PLE spectra for CaLa₄Si₃O₁₃, $CaGd_4Si_3O_{13}$, and $CaM_4Si_3O_{13}$ (M = La, Gd, or both La and Gd) doped with 5% of Tb³⁺, respectively. We compare the PLE spectra of CaLaSi₃O₁₃with CaGdSi₃O₁₃ in the upper section in Figure 1. The broad band from 170-220nm in curve a is host-related absorption. When La³⁺ is replaced by Gd³⁺, shown in curve b, the band becomes broader, because the transitions (${}^8S_{7/2} \rightarrow {}^6G_J$, ${}^{8}S_{7/2} \rightarrow {}^{6}F_{J}$) within Gd³⁺ ions overlap the host absorption. Besides, the narrow peaks at 273 and 276nm are attributed to ${}^{8}S_{7/2} \rightarrow {}^{6}I_{1}$ transition. When doping Tb³⁺ ions, other broad bands in curve c, d, and e which are resulting from the f-d transitions of Tb³⁺ in the host lattices are observed. The electrons configuration of Tb^{3+} is $4f^{8}$, so the ground state is ⁷F₆ and there are two kinds of spin states, ${}^{9}D_{J}$ and ${}^{7}D_{J}$, within the $4f^{7}5d$ excitation levels. For this reason, Tb³⁺ in a specific host exhibits two groups of f-d transitions, spin-allowed with high-energy and spinforbidden with lower energy. From 190 nm to 250 nm in curve c is a strong broad band and it is assignable to the spin-allowed transitions (${}^{7}F_{6} \rightarrow {}^{7}D_{I}$) of Tb³⁺ while another weak broad, from 240 nm to 270 nm, is assigned to the spin-forbidden transitions. However, the intensity of the f-d transitions within Tb^{3+} reduces in curve d. Here also saw the ${}^8S_{7/2} \rightarrow {}^6I_J$ transition, at 274nm, within Gd³⁺ions, indicating the existence of the energy transfer from Gd³ to Tb^{3+} in $Ca(Gd_{0.95}Tb_{0.05})_4Si_3O_{13}$. If Gd^{3+} ions only substitute half of La³⁺ ions, there is no significant change occurring, except for slight red shift of the peaks which belong to the f-d transitions, as shown in curve e.

 $Ca(La_{0.425}Gd_{0.425}Tb_{0.05})_4Si_3O_{13}$ (e).

To improve the absorption efficiency of phosphors in the VUV spectral region, we have also investigated the VUV PL spectra of $Ca(La_{0.9}Gd_yTb_{0.1})_4Si_3O_{13}$ as a function of doped Gd^{3^+} content under VUV excitation at 147 and 172 nm and the results are represented in Figures 2(a) and 2(b), respectively. The existence of the $^8S_{7/2} \rightarrow ^6I_J$ transition, at 274 nm, within Gd^{3^+} ions reveals that the energy transition from Gd^{3^+} to Tb^{3^+} happening. Consequently, we found that the PL spectra for the $Ca((La_{0.9-y}Gd_yTb_{0.1})_4Si_3O_{13})$ phosphors increases with increasing Gd^{3^+} content from y=0 to 0.90, reaching an optimal dopant value at 0.90 under both excitation conditions.

Furthermore, as indicated by a comparison of VUV PL spectra excited by 147 and 172 nm, we observed that under VUV excitation the PL intensity of our phosphor $Ca(Gd_{0.9}Tb_{0.1})_4Si_3O_{13}$ is 33 % (*i.e.*, excited at 147 nm) or 67 % (*i.e.*, excited at 172 nm) of that for commodity P1-G1S from Kasei Optonix. These observations hint that $Ca(Gd_{0.9}Tb_{0.1})_4Si_3O_{13}$ might serve as a promising substitute for P1-G1S as a green-emitting PDP phosphor.

Figure 2. VUV PL intensity of $Ca(La_{0.9-y}Gd_yTb_{0.1})_4$ Si₃ O_{13} as a function of Gd^{3+} content: $\lambda_{ex} = (a)$ 147 nm and (b) 172 nm.