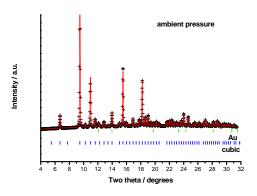
The Physical Properties of Lu₂O₃ under High-Pressure by X-ray Diffraction Method


Chih-Ming Lin (林志明)¹ and Kung-Te Wu (吳恭德)²

¹Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan ²Department of Physics, Soochow University, Taipei, Taiwan

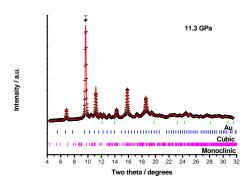

Recently, the crystal structures and phase behavior lanthanide sesquioxides, Ln₂O₃, under various conditions of temperature and pressure have been studied over many years by different research groups[1]. X-ray diffraction studies of B-type Sm₂O₃, and Gd₂O₃ under high pressure directly confirmed that pressure induces a monoclinic (B-type) to hexagonal (A-type) structural transformation[1a, 1b]. However, an important thermodynamic parameter the B-A transition, namely the volume change ΔV , and also the equation of state of B-type Ln₂O₃, were not available from these studies, because of the limited resolution of the energy-dispersive X-ray diffraction systems used[1a, 1b].

Figure 1 shows representative X-ray diffraction and standard pressure lines of internal gold patterns for the cubic structure of Lu₂O₃ at ambient pressure. Figure 2 shows representative X-ray diffraction and standard pressure lines of internal gold patterns for the cubic and monoclinic structures of Lu₂O₃ at 11.3 GPa. Figure 3 shows representative X-ray diffraction and standard pressure lines of internal gold patterns for the monoclinic structure of Lu₂O₃ at 26.9 GPa.

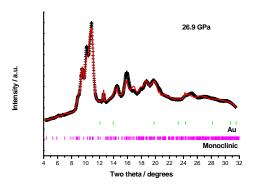

Summy, Lu₂O₃ in-situ angulaur-dispersive X-ray diffraction (ADXD) measurement was performed in the BL01C2 beamline during Otc. $12{\sim}15$, 2007. Cubic Lu₂O₃ was compressed in a symmetric diamond anvil cell at room temperature and studied in situ using angulaur-dispersive X-ray diffraction (ADXD) method. A transition to a monoclinic phase began at 11.3 GPa and was complete at 26.9 GPa.

Figure 1. X-ray diffraction patterns of the Lu₂O₃ sample at ambient pressure.

Figure 2. X-ray diffraction patterns of the Lu_2O_3 sample at 11.3 GPa.

Figure 3. X-ray diffraction patterns of the Lu_2O_3 sample at 26.9 GPa.

[1] (a) T. Atou, K. Kusaba, Y. Tsuchida, W. Utsumi, T. Yagi, and Y. Syono, Mater. Res. Bull. **24**, 1171 (1989): (b) T. Atou, K. Kusaba. Y. Syono, T. Kikegawa, and H. Iwasaki, in "High-Pressure Research in Mineral Physics: Application to Earth and Planetary Science" (M. H. Manghnani and Y. Syono, Eds.), p. 469. American Geophysical Union, Washington, DC (1992); (c) G. Chen, N. A. Stump, R. G. Haire, J. B. Burns, and J. R. Peterson, High Pressure Res. **12**, 83 (1994).