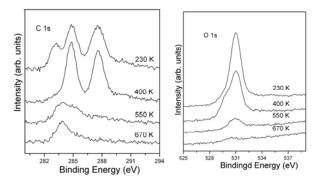

Reactions of ICH₂COOH on Cu(100)

Jian-Shiun Lin (林建勳) and Jong-Liang Lin (林榮良)

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan


Surface intermediates, especially short-lived species, in practical heterogeneous processes are difficult to be detected. Therefore, the reaction mechanisms as well as the relation between reactivity and surface structure often remain unresolved. Preparation and isolation of catalytically important intermediates proposed in heterogeneous processes on single crystal surfaces can provide the reaction information about these surface processes.

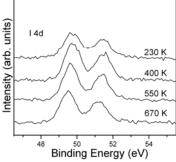

ICH₂COOH possesses two functional groups of C-I and COOH and is expected to have a rich chemistry. Temperature-programmed reaction/desorption and x-ray photoelectron spectroscopy have been employed to investigate the reactions of ICH₂COOH on Cu(100). Figure 1 shows the TPR/D spectra of 0.2 L (1L= 1×10^{-6} Torr·s) ICH₂COOH adsorbed on Cu(100). The ions of m/z= 18, 28, 42, 44, and 45 amu are presented to show the evolution of the reaction products of H₂O, CO, CO₂, CH₂=C=O (ketene), and CH₃COOH. The CO is desorbed at ~640 K; the others at ~550 K.

Figure 1. Temperature-programmed reaction/desorption spectra of 0.2 L ICH₂COOH on Cu(100).

Figire 2 shows the x-ray photoemission spectra of C 1s, O 1s and I 4d of 0.46 L ICH₂COOH adsorbed on Cu(100) at ~100 K, followed by briefly heating the surface to the temperatures indicated. Previous studies have shown the C-I bonds breaks below 200 K for alkyl iodide on copper surfaces. The similar I 4d spectra observed between 230-670 K indicate that the C-I bond of ICH₂COOH, dissociates on Cu(100) at a temperature \leq 230 K. The dissociation product is – CH₂COOH which may be responsible for the 283.3 eV C 1s peak. The 284.8 and 287.5 eV peaks are assigned to CH₃COO(a). The reaction of ICH₂COOH on Cu(100) may leave surface carbon.

Figure 2. X-ray photoemission spectra of 0.46 L ICH₂COOH on Cu(100)