3D Morphology Studies of LiFePO₄/Bacterial Cellulose Cathode Material by X-ray Microscopy

Yun-Chih Lin (林允智)¹, Shin-Hong Chang (張士波)¹, Bing-Joe Hwang (黃炳照)^{1,2}, Yen-Fang Song (宋豔芳)², and Gung-Chian Yin (殷廣鈐)²

¹Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

²National Synchrotron Radiation Research Center, Hsinchu, Taiwan

Introduction

LiFePO $_4$ was a novel cathode material that exhibited high electrochemical stability, high performance and low cost for Li-ion secondary battery. However, the electric conductivity and Li-ion diffusivity of olivine structured LiFePO $_4$ is still far from satisfactory levels. Therefore, the electric performance of conductive carbon and dispersion of LiFePO $_4$ /carbon hybrid cathode material played the most important roles.

The bacterial cellulose of NATA film was an excellent carbon source for LiFePO $_4$ /carbon hybrid cathode material. NATA with its network and high porous structure (Fig. 1) has ability to provide good electric performance.

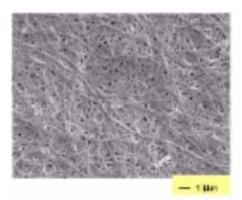
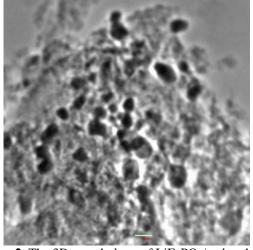
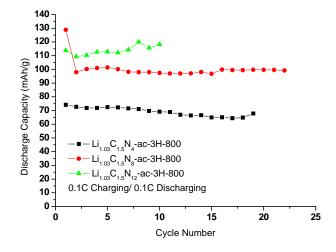



Figure 1. The surface morphology of NATA film.


In general, the carefully investigation of 3D morphology of LiFePO₄/carbon hybrid cathode material is difficult. Fortunatley, X-ray microscopy was a powerful tool to investigate the 3D structure of hybrid materials.

Results and Discussions

Figure 2 shows one slide of the 3D structure which was taken by X-ray microscopy for LiFePO $_4$ /carbon hybrid cathode material. The black particles of LiFeO $_4$ adhered on the light matrix of carbonized NATA film can be seen. The well mixing of hybrid cathode material of LiFePO $_4$ and carbonized NATA film provided the excellent electrochemical cycling performance as shown in figure 3.

Figure 2. The 3D morphology of LiFePO₄/carbon hybrid cathode material

Figure 3. Cycling performance of various LiFePO₄/NATA carbon hybrid cathode materials