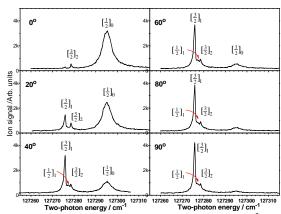

Autoionizing Rydberg Series (np', nf') of Ar Investigated by Stepwise Excitations with Lasers and Synchrotron Radiation

Yin-Yu Lee (李英裕)¹, Tzan-Yi Dung (董讚儀)¹, Jih-Young Yu (喻霽陽)¹, Yen-Fang Song (宋艷芳)¹, Grace-H. Ho (鄭秀英)¹, Tse-Pin Huang (黃自平)¹, Wan-Chun Pan (潘婉君)², I-Chia Chen (陳益佳)², Shih-Yu Tu (塗時雨)³, Andy-H. Kung (孔慶昌)³, and Long-C. Lee⁴


¹National Synchrotron Radiation Research Center, Hsinchu, Taiwan
²Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
³Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
⁴Department of Electrical and Computer Engineering, San Diego State University, San Diego, USA

Resonant excitation by synchrotron radiation and subsequent ionization by a tunable laser is used to study the photoionization of even-parity states in noble gases. High resolution laser system was used to probe autoioning states of argon. By tuning synchrotron radiation, Ar was excited to Ar* resonance state, we further excite the Ar* to autoionzing states with a tunable laser within the wavelength region of 11800 ~ 13200 cm⁻¹.

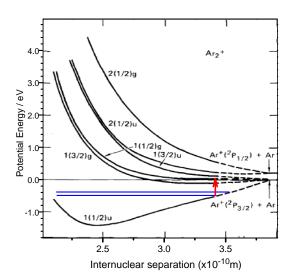

The intermediate states are $3p^5_{1/2}$ $3d'[3/2]_1$, $5d'[3/2]_1$, $5s'[1/2]_1$, $7s'[1/2]_1$, $3p^5_{3/2}$ $6d[1/2]_1$, $6d[3/2]_1$, and $8s[3/2]_1$, and the ARS are $3p^5_{1/2}$ $np'[1/2]_0$, $[1/2]_1$, $[3/2]_1$, $[3/2]_2$, and $nf'[5/2]_2$. With a specific intermediate state, the accessible states are very limited so that each ARS spectrum is simple and easy to identify up to very high n members, which are not yet well studied. In this experiment, excitation bands that are broader than atomic lines are observed. These bands are tentatively assigned to photodissociation of Ar_2^+ excited in high vibrational levels.

Figure 1. Two-photon ionization spectrum produced via $3p^{5}_{1/2}$ 5s' $[1/2]_{1}$ intermediate state. The energy is a sum of Ti:S laser and the intermediate state . The polarization vectors of two light beams are parallel. The positions of autoionization Rydberg states, $3p^{5}_{1/2}$ np' $[1/2]_{0}$, $3p^{5}_{1/2}$ np' $[3/2]_{2}$ and $3p^{5}_{1/2}$ nf' $[5/2]_{2}$, are indicated.

Figure 2. Two-photon ionization spectrum of $3p^5_{1/2}$ 11p' produced via $3p^5_{1/2}$ 3d' [3/2]₁ intermediate state. The energy is a sum of Ti:S laser and intermediate state. The angles between the polarization vectors of two light beams vary from 0° to 90° as indicated.

Figure 3. The proposed transitions for the highly-vibrational excited Ar_2^{+*} dimer. The potential curves are adopted from J.T. Moseley *et al*, Chem. Phys. **67**, 1659 (1978).