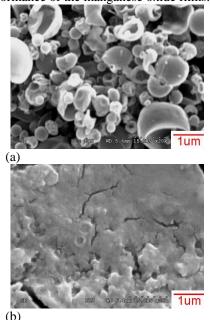
Characterization of Spray Pyrolyzed Manganese Oxide Powders Deposited by Electrophoretic Deposition Technique


Chung-Kwei Lin (林中魁)¹, Chin-Yie Chen (陳錦毅)¹, Chien-Yie Tsay (蔡健益)¹, Cherng-Yuh Su (蘇程裕)², and Hong-Ming Lin (林鴻明)³

¹Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan ²Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei, Taiwan

³Department of Materials Engineering, Tatung University, Taipei, Taiwan

Supercapacitors has been stimulated by their potential application as electric storage devices that provide high power transiently. Manganese oxides, where the manganese can exhibit in various valence states, are promising supercapacitor materials due to the low cost of raw materials and the fact that manganese is considered environmentally more friendly than other nobel metal oxides.

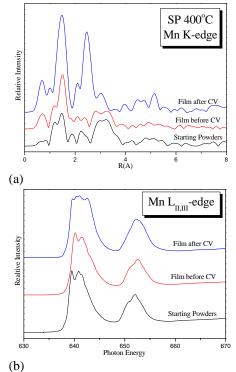

In the present work, nanocrystalline manganese oxide powders were prepared by spray pyrolysis from manganese acetate solution at 400 °C. The powders graphite were coated onto substrates electrophorectic deposition. The as-deposited films were examined by scanning electron microscopy (SEM), X-ray absorption spectroscopy (XAS), and cycling voltammetry (CV), etc. Experimental results showed that manganese oxide powders prepared at 400 °C were hollow spherical particles with fractured shells and possessed the highest surface area, Fig. 1(a). CV examination showed that the as-deposited coatings exhibited a high specific capacitance of ~270 F/g. After CV tests (Fig. 1(b), the porous structure have destroyed and degraded the supercapacitive performance of the manganese oxide films.

Figure 1. SEM photos of manganese oxide films (a) before and (b) after CV tests.

Synchrotron X-ray absorption spectroscopy studies was used to evaluate the electrochemical behavior of manganese oxide films before and after

CV tests. Figure 2(a) shows the radial distribution functions (RDFs) of manganese at various stages (starting powder, as-prepared films and films after CV tests). It can be noted that the starting powder and as-prepared films exhibited similar RDFs, but significant differences can be observed after CV tests. According to X-ray diffraction results, the previous two exhibited Mn₃O₄ phase, while Mn₃O₄ to MnO₂ transition may occur during CV tests. Figure 2(b) reveals the manganese electronic structures of the corresponding samples examined in Fig. 2(a). An obvious intensity increase for the peak at ~643 eV (corresponding to Mn⁴⁺ ion) can be observed after CV tests. This confirmed the formation of MnO₂ phase, at least on the surface, during CV tests. Synchrotron XAS results showed that the manganese with a valence of +2.67 (Mn₃O₄) was transited into tetravalent manganese (MnO₂)after cyclic voltammetry.

Figure 2. (a) Radial distribution functions and (b) XANES spectra of manganese oxide films.

*C. Y. Chen, Y. R. Lyu, C. Y. Su, H. M. Lin, and <u>C. K. Lin</u>, Surf. Coat. Technol. **202**, 1277-1281 (2007).