Effect of Mn Impurities on the Superconductivity in Na_xCoO₂·yH₂O

Yu-Jen Chen (陳裕仁)^{1,4}, Chia-Jyi Liu (劉嘉吉)², Jung-Sheng Wang (王忠勝)², Jiunn-Yuan Lin (林俊源)¹, Chia-Pin Sun (孫家彬)³, Shih-Wen Huang (黃詩雯)⁴, Jenn-Min Lee (李振民)⁵, Jin-Ming Chen (陳錦明)⁵, Jyh-Fu Lee (李志甫)⁵, Din-Goa Liu (劉定國)⁵, and Hung-Duen Yang (楊弘敦)⁵

¹Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan

²Department of Physics, National Changhua University of Education, Changhua, Taiwan

³Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan

⁴Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan

⁵National Synchrotron Radiation Research Center, Hsinchu, Taiwan

 $Na_xCoO_2\cdot yH_2O$ has stimulated researchers due to its exotic superconductivity, the electronic frustration on the triangular Co lattice, and the characters of the strongly correlated electron systems. There is no doubt that $Na_xCoO_2\cdot yH_2O$ has been recognized as one of the most interesting superconductors since the high- T_c superconductor era. The superconducting order parameter of $Na_xCoO_2\cdot yH_2O$ has remained elusive. To gain more insights into the nature of the superconductivity in $Na_xCoO_2\cdot yH_2O$, the impurity scattering effects could provide one useful venue [1].

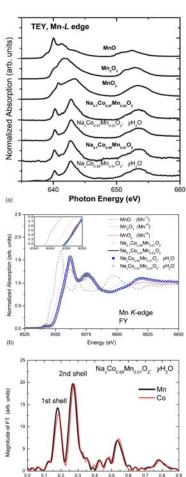


FIG. 1. (Color online)Mn (a)L-edge and (b) K-edge XANES of $Na_xCo_{1-z}Mn_zO_2\cdot yH2O$ and the standard samples; (c) FT magnitudes with phase correction of the k3-weighted EXAFS data at Mn K edge. Inset of (b) shows the enlarged edge region. All the Mn-doped samples have similar spectra in (a) and (b).

For the first time, x-ray absorption spectroscopy (XAS) shows that the doped Mn ions indeed occupy the Co sites. However, the unitary impurity scattering by Mn does not lead to strong T_c suppression. To reconcile the weak T_c suppression by impurities with other experiments, coexistence of s-wave and the unconventional pairings is proposed.

To characterize the samples, x-ray absorption spectroscopy (XAS) (including XANES and EXAFS) was carried out for Mn K- and L-edges as well as Co K-edge. For further characterizations of the doped Mn ions, Fig. 1(a) shows Mn L-edge XANES spectra of Na_xCo_{1-z}Mn_zO₂·yH₂O together with those of MnO₂, Mn₂O₃ and MnO. It is clear that all the Mn-doped samples have similar spectra distinct from those of the starting material Mn₂O₃ and two other common manganese oxides. Moreover, judged by the edge energy around 6550 eV in Fig. 1(b), Mn ions in all the doped samples, hydrated or not, have a valance close to +4. The first spectroscopic evidence of Mn⁴⁺ is provided here for Mn ions on the triangular lattice. Fig. 1(c) shows the Fourier transform (FT) amplitudes and profiles of data at Co and Mn K-edges **EXAFS** Na_xCo_{0.99}Mn_{0.01}O₂·yH₂O. FT amplitudes and profiles of EXAFS for both Co and Mn show identical features, indicating that Mn ions are in the same environment as Co ions and no other local structure of any second phase is present. FT peak position for the first shell of Co is 0.187 nm (Fig. 1(c)), identical to the Co-O bond length of Na_xCoO₂·vH₂O from the neutron diffraction. Also shown in Fig. 2(c), the Mn-O bond length is found to be 0.181 nm. This implies that the Mn^{4+} ionic radius (r_I) of 0.052 nm might be smaller than that of the Co ions which valance is between +3.3 and +3.4 (r = 0.065 nm for Co^{3+} ; r_I for Co⁴⁺ not available).

[1] Y.-J. Chen, C.-J. Liu, J.-S. Wang, J.-Y. Lin, C. P. Sun, S. W. Huang, J. M. Lee, J. M. Chen, J. F. Lee, D. G. Liu, and H. D. Yang, Phys. Rev. B **76**, 092501 (2007).