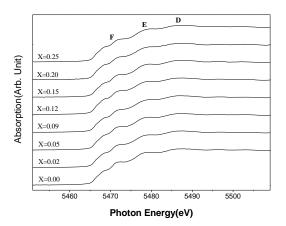
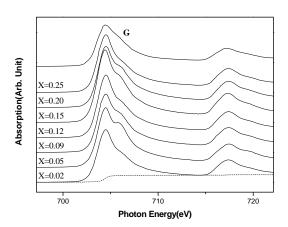

X-ray Absorption Spectroscopy Study of Fe₂VSi_{1-x}Al_x

Wei-Cheng Wang (王偉丞)¹, Yu-Nan Chen (陳禹男)¹, Yi-Sheng Liu (劉亦昇)¹, Jeng-Lung Chen (陳政龍)¹, Yung-Kang Kuo (郭永綱)², Chin-Shan Lue (呂欽山)³, and Henry C.-L. Chang (張經霖)¹

¹Department of Physics, Tamkang University, Taipei, Taiwan ²Department of Physics, National Dong Hwa University, Hualien, Taiwan ³Department of Physics, National Cheng Kung University, Tainan, Taiwan

We have performed x-ray absorption near edge structure (XANES) study on a series of Fe₂VSi based Heusler type compounds to study the correlations between electronic structure and the thermoelectric property. A series of Fe₂VSi_{1-x}Al_x compounds with different Al concentrations (x form 0 to 0.25) were studied. The XANES results show that the unoccupied density of states above Fermi level increases with increasing Al concentration, which is positively correlated with the results of resistivity and the Seebeck coefficient measurements. On the other hand, increased Al concentration does not affect the hybridization between transition metals V and Fe.


A series of $Fe_2VSi_{1-x}Al_x$ measurements were performed at National Synchrotron Radiation Research Center (NSRRC) in Taiwan. The Fe $L_{2,3}$ -edge spectra were measured at Dragon (BL-11A) in total election yield mode. The V $L_{2,3}$ -edge spectra were measured at HSGM (BL-20A) in total election yield mode. Fe and V K-edge spectra were measured at Wiggler (BL-17C) in fluorescence mode. All measurements were performed at room temperature.


Figure 1. Fe K-edge XANES of Fe₂VSi_{1-x}Al_x alloys. There are three main features (A, B and C) spectrum. The intensity of absorption varies with Al concentration. The feature-rich spectra are due to the transitions form the Fe 1s to 4p-derived unoccupied states, which consisted of strongly hybridized Fe 3d and Al 3p, and V 3d and Fe 4p orbitals [1,2].

[1] L. S. Hsu et al., Phys. Rev. B 66, 205203 (2002).

[2] L. S. Hsu et al., Journal of Alloys and Compounds

Figure 2. V K-edge XANES of $Fe_2VSi_{1-x}Al_x$ alloys. There are three main features (D, E and F) spectrum. The intensity of absorption varies with Al concentration. The feature-rich spectra are due to the transitions form the V 1s to 4p-derived unoccupied states, which consisted of strongly hybridized V 3d and Al 3p, and Fe 3d and V 4p orbitals [1,2].

Figure 3. Fe $L_{2,3}$ -edge XANES of Fe₂VSi_{1-x}Al_x alloys and stander Fe. The intensity of absorption varies with Al concentration due to the variation of the 3d-derived unoccupied states. The two prominent are the $2p_{3/2}$ (L_3) and $2p_{1/2}$ (L_2) peaks due to spin-orbit splitting. The satellite peak (G) after Fe L_3 -edge is hybridized Fe 3d and Al 3p orbital [3,4].

[3] G. A. Botton et al., Phys. Rev. B 54, 1682 (1996).

[4] K. Soda et al., Physica B 351, 338–340 (2004).