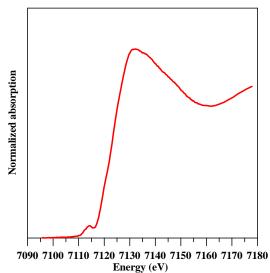
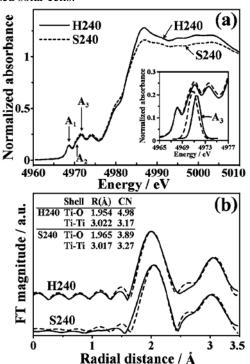
Characterization of Metal Oxides Serving as Photocatalyic Electrodes for Water Splitting under Light Illumination


Kai-Ping Wang (王凱平), Pei-Shan Li (李佩珊), and His-Sheng Teng (鄧熙聖)

Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan

Fujishima and Honda in 1972 first showed that n-TiO₂ can be used as a photoanode for the photoelectrolysis of H₂O in a photoelectrochemical cell (PEC). Since then, a large number of semiconductor materials have been investigated photoelectrocatalytic electrodes for H₂ production and photovoltaic cells for electrical energy conversion. However, the PEC cell suffers from the instability of semiconductor in aqueous media. Metal oxide semiconductors with wide bandgap (2.5-3.5 eV) such as TiO₂, ZnO, Fe₂O₃, SrTiO₃, WO₃ and Cu₂O are typically more stable compared to those narrow band gap materials (0.8-2 eV) in aqueous media.


Thermodynamically, the energy requirement for the water splitting reaction is 1.23 eV. However, considering the loss mechanisms such as series resistance and the electrocatalytic overpotential, the optically produced electron hole pairs need an energy difference of approximately 2 eV for efficient photoelectrolysis. Most metal oxide semiconductors are semiconductors having a band gap bigger than 2 eV and have been studied previously for application in water splitting. A major attraction of metal oxide is that it is inexpensive, nontoxic, and readily available.

In the our research, deposition of amorphous iron(III)-oxide films on a conducting glass substrate was achieved via a cathodic bias in a 0.1 M hydrated ammonium iron(II) sulfate ((NH₄)₂Fe(SO₄)₂ ·6H₂O) solution at -1.6 V vs. Ag/AgCl. Analysis by X-ray absorption near edge structure confirmed the iron(III) feature of the amorphous films (Figure 1). The deposited

Figure 1. X-ray absorption near edge structure (XANES) spectrum of the iron(III)-oxide film.

films exhibited n-type semiconducting characteristics by showing photoresponses under an anodic bias. The Mott-Schottky method and cyclic voltammetry were employed to characterize the semiconducting properties of the deposited films, which included the band gap (2.2 eV), the potentials of the conduction and valence band edges and flat band (-0.6, +1.6 and -0.58 V vs. Ag/AgCl at)pH7, respectively), and the donor density $(1 \times 10^{22} \text{ cm}^{-3})$. The deposited iron(III)-oxide films were suitable to serve as an anode for water splitting under illumination. In addition to water splitting, we also study the dyesensitized solar cells which is one type of photovoltaic cells. The preparation of the TiO₂ nanoparticles is vitally important to further enhance the efficiency of the dyesensitized solar cells. In the our work, TiO₂ anatase nanoparticles were synthesized from a titanate for application in dye-sensitized solar cells. This TiO2 is designated as H240. In contrast to H240, the TiO₂ colloid from the sol-gel synthesis is designated as S240. Structural analysis with x-ray absorption fine structure spectroscopy (Fugure 2) showed that H240 had a low density of oxygen-vacancy defects that would serve as the trap sites to impede electron transport. The transit time of the photogenerated electrons, measured by intensity modulated photocurrent spectroscopy, was significantly shorter in the H240 films than in the S240 films. This structure-intact feature of the titanate-derived TiO₂ has led to a high photocurrent for the dyesensitized solar cells.

Figure 2. X-ray absorption fine structure spectroscopy analysis of the H240 and S240 TiO₂ nanoparticles: (a) XANES spectra. (b) Fourier transformed $k^3\chi(k)$ EXAFS spectra.