Experimental Examination of Phase Transition in FePt Films Produced by Low-Temperature Annealing

Huang-Ming Tsai (蔡煌銘)¹, Regan G. Wilks², Chih-Wen Pao (包志文)¹, Jau-Wern Chiou (邱昭文)³, An-Cheng Sun (孫安正)⁴⁵, Jen-Hwa Hsu (許仁華)⁴⁻⁵, and Way-Faung Pong (彭維鋒)¹

¹Department of Physics, Tamkang University, Taipei, Taiwan ²Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Canada

³Department of Applied Physics, National Kaohsiung University, Kaohsiung, Taiwan ⁴Department of Physics, National Taiwan University, Taipei, Taiwan ⁵Center for Nanostorage Research, National Taiwan University, Taipei, Taiwan

The high magneto-crystalline anisotropy $L1_0$ phase of Fe₅₀Pt₅₀ is an attractive material for the applications of magnetic storage media. In this work, we have investigated the variation of the electronic and atomic structures that occurs in Fe₅₀Pt₅₀ thin films. when the deposition temperatures were changed. Temperatures within the range 200-350°C were used for the deposition of films and the results show a transition is occur from a disordered fcc state to an ordered $L1_0$ (fct) state at 300°C.

structural transition occurs from a disordered fcc state to an ordered $L1_0$ (fct) state. From the EXAFS data, we can find that the Fourier transform result is almost the same with variation deposition temperature except the film deposited at 350°C. The right shoulder of the peak around the 2.5 Å of the 350°C deposited samples is larger than others that may be due to more ordered state and smaller Debye-Waller factor than others.

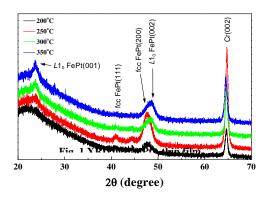
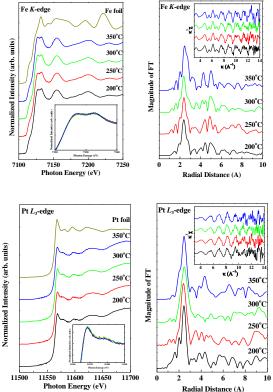



Figure 1 displays the x-ray diffraction (XRD) spectra of $Fe_{50}Pt_{50}$ thin films at different deposition temperature. We observed a clear difference near 2θ = 23° and 2θ = 48° when the deposition temperature is higher than 300°C. It's an evidence that shows the transition occurs from disordered fcc to an ordered $L1_0$ (fct) state at this temperature.

Figure 2 displays the x-ray absorption near-edge structure (XANES) spectra of the Fe K-edge and Pt L_3 -edge and extended x-ray absorption fine structure (EXAFS) Fourier transform spectra, respectively. The XANES spectra of the upper part (the Fe K-edge) reflect the excitation from the Fe 1s core state. The main two prominent features (inset figure) seem not too many differences with the variation of deposition temperatures. It is implying that the electronic structure of the Fe $_{50}$ Pt $_{50}$ thin film is almost the same when the phase transition occurs during changing the deposition temperature. This result may be due to very small lattice change when the

Figure 2. XANES and Fourier transform of Fe₅₀Pt₅₀ thin film