Thermopower and Co K-edge Studies of Potassium Sodium Cobalt Oxyhydrates $Na_{0.33}K_{0.02}(H_2O)_{1.33}CoO_{2-\delta} \ and \ Na_{0.07}K_{0.21}(H_2O)_{0.63}CoO_{2-\delta}$

Chia-Jyi Liu (劉嘉吉)¹, Chia-Yuan Liao (廖家源)¹, Jung-Sheng Wang (王忠勝)¹, Pradipta K. Nayak¹, Zhi-Ru Lin (林志儒)¹, and Hwo-Shuenn Sheu (許火順)²

¹Department of Physics, National Changhua University of Education, Changhua, Taiwan ²National Synchrontron Radiation Research Center, Hsinchu, Taiwan

We report measurements of the thermopower and Co K-edge x-ray absorption spectroscopy on bilayer and monolayer $(Na,K)_x(H_2O)_yCoO_{2-\delta}$. According to the Co K-edge x-ray absorption spectra, the Co oxidation number for bilayer hydrate $Na_{0.33}K_{0.02}(H_2O)_{1.33}CoO_{2-\delta}$ is higher than that of monolayer hydrate $Na_{0.07}K_{0.21}(H_2O)_{0.63}CoO_{2-\delta}$ with a chemical shift of 3.5 eV, which is in sharp contrast with Co K-edge x-ray

absorption spectroscopy and cerimetric titration results for $Na_x(H_2O)_yCoO_{2-\delta}$, where there is essentially no difference of the oxidation number of Co between bilayer and monolayer sodium cobalt oxyhydrates. According to thermopower analysis, band narrowing is observed when $\gamma\text{-Na}_{0.7}CoO_2$ is transformed to potassium sodium cobalt oxyhydrates.