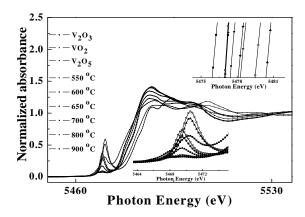
Enhancement of Capacity via Phase Transformation of LiVOPO₄ to Li₃V₂(PO₄)₃


Hui-Tung Kuo (郭慧通)¹, Nitin C. Bagkar¹, Ru-Shi Liu (劉如熹)¹, Chih-Hung Shen (沈志鴻)², D.-S. Shy (施得旭)², X.-K. Xing (刑雪坤)², Jyh-Fu Lee (李志甫)³, and Jin-Ming Chen (陳錦明)³

¹Department of Chemistry, National Taiwan University, Taipei, Taiwan ²SYNergy Scien Tech Corporation, Hsinchu, Taiwan ³National Synchrotron Radiation Research Center, Hsinchu, Taiwan

The phosphate-based compounds, such as LiFePO₄, LiCoPO₄, Li₃V₂(PO₄)₃ and LiVOPO₄ are recommended as the cathode materials for lithium ion batteries in recent years. At present, great attention has been paid for LiFePO₄ as an alternative candidate material. However, in comparison with LiFePO₄, LiVOPO₄ has an advantage of higher potential (4.0 V versus Li/Li⁺) for charging/discharging and triclinic phase of LiVOPO₄ synthesized from ε-VOPO₄ shows the capacity of 100 mAhg⁻¹ up to 100 cycles at C/10 rate. Therefore, LiVOPO4 is also considered as the alternative cathode with discharged state. However, capacity for Li deintercalation is decreased with increasing current density although higher potential of 4.0 V is exhibited. Therefore, improvement in Li intercalation and de-intercalation capacity is strongly desired for LiVOPO₄. The preparation methods of hydro-thermal and solid state reaction¹⁵ have been reported for LiVOPO₄, and the capacity as well as cycle stability of electrochemical Li intercalation into LiVOPO4 could be improved by optimizing the preparation method.

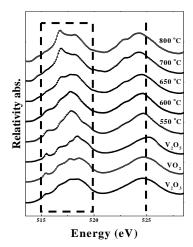

In this paper, we report the sol-gel method to prepare the $\alpha\text{-LiVOPO}_4$ and investigated the process of phase transformation from $\alpha\text{-LiVOPO}_4$ to $\alpha\text{-Li}_3V_2(PO_4)_3$. The result is particularly interesting since there are not much reports on the phase transformation of the triclinic structure of $\alpha\text{-LiVOPO}_4$ into the monoclinic structure of $\alpha\text{-Li}_3V_2(PO_4)_3$ by sintering at 550 \sim 900 °C in 5% H_2/Ar reducing atmosphere.

Figure 1 shows the XANES spectra at V *K*-edge for a series samples with different sintering temperature along with the reference materials such as V_2O_3 , VO_2 and V_2O_5 in different oxidation states. For the samples at low sintering temperature (550 \sim 650 °C) are the triclinic crystal system of α -LiVOPO₄ in a lower symmetry unit with a noncentrosymmetric environment around the vanadium site which showed a sharp pre-edge peak. On the other hand, the samples at high temperature (700 \sim 800 °C) have transformed to the phase of monoclinic crystal system of α -Li₃V₂(PO₄)₃ in a higher symmetry unit which showed a smooth pre-edge peak. The vanadium oxidation state is determined through the position of the absorption edge, which shifts to higher energies with an increasing valence state.

Figure 1. Room temperature of XANES spectrum calibrated and normalized for different temperature series sample at V *K*-edge energy

The XAS spectra at V L-edge together with the reference materials in different valence state of vanadium are shown in Fig. 2. The absorption peak is shifted smoothly from higher energy (+4 state for V in α -LiVOPO₄ phase) to lower energy (+3 state for V in α -Li₃V₂(PO₄)₃ phase) as the sintering temperature is increased from 550 °C to 800 °C as shown by the dash line in the $L_{\rm II}$ part. For the $L_{\rm III}$ part the peak shape is changed as the sintering temperature increased from 550 °C to 800 °C as shown by the dash rectangle in the $L_{\rm III}$ part. It means that different crystal system (triclinic vs. monoclinic) have different crystal-field effects and electronic interactions around the vanadium metal ion.

Figure 2. Room temperature of XANES spectrum calibrated and normalized for different temperature series sample at V *L*-edge energy