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With in-situ small-angle and wide-angle X-ray
scattering and differential scanning  calorimetry
(SAXS/WAXS/DSC), we have studied the structural
evolution during the cold crystallization process of
Poly(9,9-di-n-octyl-2,7-fluorene) (PFO). The SAXS data
(Figure 1) indicates clearly the formation and growth of
nanograins, from ~8 nm in globular shape to ~15 nm in
disk-like shape, during the temperature elevation to 140
°C for isothermal crystallization (Figure 2). The
simultaneously recorded WAXS and DSC consistently
reveal an accompanied crystallization, at the time when a
lamellar packing order of the nanograins appears in the
in-site SAXS spectra. Few minutes after the isothermal
crystallization at 145 °C, we found that PFO already
reaches a thermal equilibrium structure, with an o
crystalline structure in the lamellar ordered domains of a
lamellar spacing of 50 nm. SEM images (Figure 3) taken
in the isothermal crystallization show the consistent
nanograin size and lamellar spacing. Instead of the
classical scenario of stem-by-stem folding on the crystal
front, we found that structural evolution observed during
reheating of quenched PFO is better described by a
sequence of intragrain nucleation, intragrain growth,
followed by nanograin re-orientatation and coalescence at
elevated temperatures.
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Figure 1. Temperature dependent SAXS data after the
subtraction of the SAXS from fractal-like density
fluctuations.
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Figure 2. The temperature evolution of PFO grain size
and shape.
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Figure 3. epresentative SEls of coId—crysaIIized PFO
films, suggesting local alignment of nanograins with
increasing t.. or T.: quenched after t,.= 1 h,

Based on the micro-Brownian motion model, we
propose that the PFO crystallization proceeds by, first,
molecular nucleation into nanometer-sized globules, then,
a subsequent coalescence of nanoglobules or nanograins
via Brownian motion, in a manner similar to siliceous
nanograins. More importantly, the nanograins appear to
play a fundamental role in the morphological
development of several polymer films, such as PFO and
SPS we observed.
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