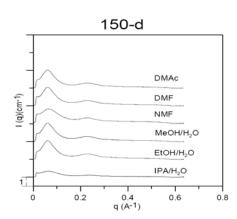
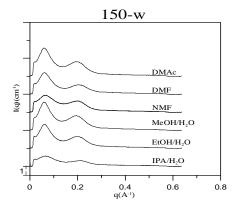
Morphology of Nafion Membranes Prepared by Solutions Casting


Chia-Hung Ma (馬嘉泓)¹, T.- Leon Yu (余子隆)^{1,2}, Hsiu-Li Lin (林秀麗)¹, Yu-Ting Huang (黃玉婷)¹, Yi-Ling Chen (陳衣伶)¹, U-Ser Jeng (鄭友舜)³, Ying-Huang Lai (賴英煌)³, and Ya-Sen Sun (孫亞賢)³

¹Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan


²Fuel Cells Center, Yuan Ze University, Taoyuan, Taiwan ³National Synchrotron Radiation Research Center, Hsinchu, Taiwan

Nafion, an ionomer composed of perfluorocarbon backbone and vinyl ether side chains terminated with $-SO_3$ groups, has dual solubility parameters, i.e. $^{3})^{1/2}$ relating to perfluorocarbon $_{2}$ = 17.3 (cal/cm³)^{1/2} relating to $_{1}$ = 9.7 (cal/cm³)^{1/2} backbones and sulfonated vinyl ether side chains. In this study, the conformations of Nafion molecules in dilute solutions with solvents of various dielectric constants solubility parameters , i.e. N,N'-dimethyl acetamide $=10.8 \text{ (cal/cm}^3)^{1/2},$ (DMAc, =37.8), N,N'-dimethyl $(cal/cm^3)^{1/2}$ =12.2formamide (DMF, =16.1 (cal/cm³)^{1/2}, N-methyl formamide (NMF, =182.4), methanol-water mixture (4/1 g/g,=40.3), ethanol-water mixture (4/1 g/g, (cal/cm3)1/2, $=16.3 \text{ (cal/cm}^3)^{1/2},$ =40.3), and propanol-water $=16.3 \text{ (cal/cm}^3)^{1/2}$ mixture (4/1 g/g,=40.3) were freeze dried and observed by transmission electron microscope (TEM). The Nafion membranes were prepared by solutions casting with these solvents and evaporated the solvents at temperatures below T_G of Nafion, then annealed the membranes at temperatures above T_G of Nafion. The morphology of Nafion membranes were investigated using small angle X-ray scattering (SAXS), differential scanning calorimeter

(DSC), and thermal gravimetric analysis (TGA). These observations showed conformations of Nafion molecules in dilute solutions and membranes morphology were of solvents. The Nafion strongly influenced by and molecules behaved coiled-like structures and low molecular aggregations in solvents (i.e. DMAc and DMF) with low and closing to $_{I}$ = 9.7 (cal/cm³)^{1/2} of Nafion perfluorocarbon backbone and thus low ionic -SO₃H aggregations in membranes after solvents were evaporated by solutions casting. The Nafion molecules behaved rod-like structures and low molecular aggregations in solvents (i.e. NMF) with high $_2$ = 17.3 (cal/cm³)^{1/2} of Nafion vinylether closing to side chains and thus low degree of perfluorocarbon backbones aggregations and low ionic aggregations in membranes after solvents were evaporated by solutions casting. The Nafion molecules showed molecular aggregations in solvents (i.e. alcohol-water mixture solvents) with low and closing to 2= 17.3 (cal/cm³)^{1/2} of Nafion vinylether side chains and thus high degree of perfluorocarbon backbones aggregations and high ionic aggregations in membranes after solvents were evaporated by solutions casting.

Figure 1. SAXS data of Nafion membranes prepared by solutions casting from various solvents and annealed at 150°C for 90 min. The membranes were stored at 25°C with RH 37% before SAXS study.

Figure 2. SAXS data of Nafion membranes prepared by solutions casting from various solvents and annealed at 150°C for 90 min. The membranes were stored at 25°C in distilled water before SAXS study.