Assemblies of Two New Metal-Organic Frameworks Constructed from Cd(II) with 2,2'-Bipyrimidine and Cyclic Oxocarbon Dianions $C_nO_n^{2-}$ (n =4, 5)

Chih-Chieh Wang (王志傑)¹, Chen-Tsung Kuo¹, Jing-Chun Yang¹, Gene-Hsiang Lee (李錦祥)², Wei-Ju Shih (施韋如)³, and Hwo-Shuenn Sheu (許火順)³

¹Department of Chemistry, Soochow University, Taipei, Taiwan ²Instrumentation Center, National Taiwan University, Taipei, Taiwan ³National Synchrotron Radiation Research Center, Hsinchu, Taiwan

Two extended networks of Cd(II) with 2,2'bipyrimidine (bpym) and cyclic oxocarbon dianions $C_n O_n^{2-}$ (n = 4, 5) with formulas $[Cd(C_4O_4)(bpym)_{0.5}(H_2O)]$ (1) and $[Cd(C_5O_5)(bpym)_{0.5}(H_2O)]$ (2) have been synthesized and characterized by singlecrystal X-ray diffraction studies. Structural determination reveals that, in compounds 1, each Cd center lies in a sevencoordinate environment bonded to two bpym nitrogen atoms and five oxygen donors from four squarate and one water molecules. The squarateacts as a bridging ligand with two different binding modes, a tetramonodentate (14) and a bis-bridging (14) coordination mode, linking the Cd(II) ions to form a two-dimensional (2D) metalsquarate layer. Adjacent layers are then mutually linked via bridges of bis-bidentate bpym ligands constructing a three-dimensional (3D) triangular metal-organic

framework (MOF). In compound 2, each Cd center lies in an eight-coordinate environment bonded to two bpym nitrogen atoms and six oxygen donors from three croconate ligands and one water molecule. $(C_5O_5^{2-})$ croconate adopts new bisbidentate/monodentate (15) bridging mode and links crystallographically identical Cd ions, forming a onedimensional (1D) bichain. Adjacent bichains are then mutually linked via the bridges of bis-bidentate bpym ligands constructing a 2D layered MOF, which is then extended to a 3D supramolecular architecture by two intermolecular ð-ð interactions between the pyrimidyl rings of bpyms and between cyclic five-membered rings of croconates. Both MOFs are thermally stable, as evidenced by thermogravimetric analysis and in-situ powder X-rav diffraction measurements.