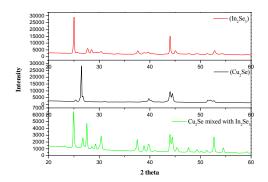
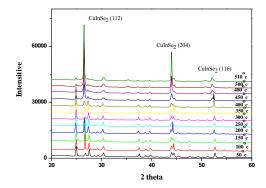
Investigation of Reaction between Cu₂Se and In₂Se₃ during Temperature Ramping by In-Situ X-ray Diffraction

Bing-Joe Hwang (黃炳照)¹, Zh-Zhueng Wu (吳志中)¹ Chih-Chao Li (李之釗)², and Wei-Tsung Chuang (莊偉綜)²


¹Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

² National Synchrotron Radiation Research Center, Hsinchu, Taiwan


Chalcopyrite α -CuInSe₂(CIS) and its alloys with Ga or S, have been proven to be absorbed materials for high efficiency thin film solar cells. The purpose of this work is to investigate the reaction between Cu₂Se and In₂Se₃ during temperature ramping by in-situ XRD. The reaction between Cu₂Se and In₂Se₃ can be expressed as the following equation,

$$Cu_2Se + In_2Se_3 \rightarrow 2CuInSe_2 + 2Se(vapor)$$

Since the evaporation pressure of selenium is higher than Cu and In individual elements, the extra Se powders were added on the top of the mixture of In₂Se₃ and Cu₂Se powders. Figure 1 shows the XRD pattern of the individual powders of In₂Se₃, Cu₂Se and its physical mixture. From the JCPDS database, it indicates that the structures of In₂Se₃ and Cu₂Se are hexagonal and orthorhombic, respectively. Figure 2 shows the structure evolution of the mixture of the Cu₂Se and In₂Se₃ powders during temperature ramping with a ramp rate of 10 °C/min. When temperature is increased, the phase is starting to change. All of In₂Se₃ and Cu₂Se peaks are transformed to CuInSe₂ (112) \((204) \((116) \) alloy, and the peaks for the In₂Se₃ and Cu₂Se powders gradually disappear. A detailed understanding of the phase equilibria and formation kinetics of CIS and its subternaries would greatly assist the development of robust process models to optimize high performace and costeffective commercial process

Figure 1. XRD pattern of prinstine In₂Se₃, and Cu₂Se powders as well as their mixture.

Figure 2. Evolution of XRD patterns of the mixture of Cu_2Se and In_2Se_3 powders during ramping temperature. Ramp rate = 10 °C/min from 60 °C to 510 °C