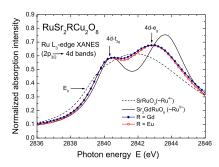

The Ru Electron Configuration of RuSr₂EuCu₂O₈

B.-C. Chang (張炳章)¹, C.-Y. Yang (楊致芸)¹, H.-C. Ku (古煥球)¹, and L.-Y. Jang (張凌雲)²


¹Department of Physics, National Tsing Hua University, Hsinchu, Taiwan ²National Synchrotron Radiation Research Center, Hsinchu, Taiwan

The ac electrical resistivity r(T) and volume magnetic susceptibility c_V (T) are shown in Fig. 1 for $RuSr_2EuCu_2O_8$ under 1 G field-cooled (FC) and zero-field-cooled (ZFC) conditions. The resistivity shows a non-Fermi-liquid linear T-dependence behavior down to the weak-ferromagnetic ordering temperature T_{Curie} of 133 K, and changes to a T^2 -dependence below T_{Curie} due to the magnetic order. [2]

Figure 1. Electric resistivity r(T) and volume magnetic susceptibility $c_V(T)$ under 1 G field-cooled (FC) and zero-field-cooled (ZFC) conditions for $RuSr_2EuCu_2O_8$.

The normalized Ru L₃-edge (2p-4d dipole transition) XANES at 300 K for RuSr₂EuCu₂O₈ and RuSr₂GdCu₂O₈ as well as for two standards, SrRuO₃ (Ru⁴⁺) and Sr₂GdRuO₆ (Ru⁵⁺), were shown in Fig. 2. The almost identical threshold energy Eo for the two Ru-1212 samples, as compared with RuSr₂GdO₆ standard, indicate that Ru valence is close to 5+ with a similar RuO₆ environment. Peak A is the transition form 2p_{3/2} to 4d-t_{2g} and peak B is the transition form $2p_{3/2}$ to $4d-e_g$. The energy separation E = 2.6 eV for $RuSr_2GdCu_2O_8$ and smaller than 3.2 eV for Sr₂GdRuO₆, which indicates a mixed-valence Ru^{4/5+} character. The Ru self-doping with anisotropic hybridization may drive the resulting Ru⁴⁺/Ru⁵ mixed-valent system metallic ferromagnetic via a double exchange interaction. [1, 2]

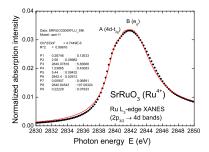
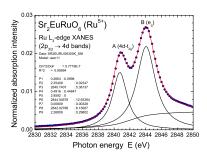
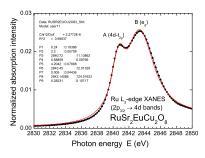


Figure 2. Ru L_3 -edge XANES for RuSr $_2$ GdCu $_2$ O $_8$ and RuSr $_2$ EuCu $_2$ O $_8$.


The Ru electron configuration of $SrRuO_3$ (Ru^{4+}), Sr_2EuRuO_6 (Ru^{5+}) and $RuSr_2EuCu_2O_8$ was analysis, and

the XANES spectra was fitted by the following equation. $I_AL(E_{oA},W_A)+I_BL(E_{oB},W_B)+I_tArctan(Eo,W)$, where L(x,y) was Lorentz equation. (1) SrRuO3

 $I_A : I_B = 0.59 : 1$, DE = 2842.4-2840.07 = 2.33 eV $W_A = 2.56$ eV, $W_B = 5.44$ eV



(2) Sr_2EuRuO_6 $I_A: I_B = 0.75: 1$, DE = 2844.05-2840.73 = 3.28 eV $W_A = 2.25 eV$, $W_B = 2.86 eV$

(3) $RuSr_2EuCu_2O_8$ $I_A:I_B=0.666:1, DE=2843.45-2840.72=2.73 \ eV$

 $W_A = 2.2 \text{ eV}, W_B = 4.2042 \text{ eV}$

Intensity I_A and I_B were the empty t_{2g} and empty e_g bands. The empty t_{2g} : $e_g = 2.4$: 4 for Sr_2EuRuO_3 , 3: 4 for Sr_2EuRuO_6 , and 2.67: 4 for $RuSr_2EuCu_2O_8$. The 3.33 electrons in t_{2g} band indicate 33% Ru^{4+} and 67% Ru^{5+} , and imply the mixed valence of Ru^{4+} and Ru^{5+} .

REFERENCES

1. R. S. Liu, L.-Y. Jang, H.-H. Hung, and J. L. Tallon, Phys. Rev. B **63**, 212507 (2001).

2. C. Y. Yang, B. C. Chang, H. C. Ku, and Y. Y. Hsu, Phys. Rev. B **72**, 174508 (2005).