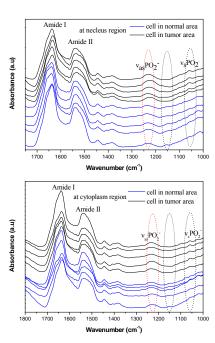
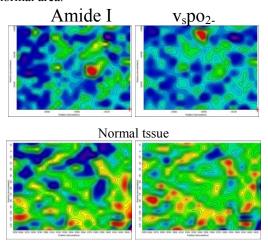
Measurement of Human Cancerous and Noncancerous Tissues by Advance Synchrotron FTIR

Cheng-Feng Lee (李政峰)¹, Chi-Jen Liu (劉啟人)¹, Yeu-Kuang Hwu (胡宇光)^{1, 2}, Michael Chin-Yuan Tzen (曾嶔元)², and Yao-Chang Lee (李耀昌)⁴

¹Institute of Physics, Academia Sinica, Taipei, Taiwan


²Departemet of Engineering and Science System, National Tsing Hua University, Hsinchu, Taiwan

³Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan ⁴National Synchrotron Radiation Research Center, Hsinchu, Taiwan


Vibrational microscopy is an important tool for biology investigation, and is particularly well established for chemical mapping of cells or tissues. The spectra allow the study and identification of vibrational mode. And higher signal-to-noise ratio is often considered as fundamental measure for a achieving a better detection and spectra quality. Synchrotron radiation-based Fouriertransform infrared (SR-FTIR) microspectroscopy, i.e. the combination of FT-IR spectroscopy, optical microscope, and utilizes the semi-coherent infrared radiation from synchrotron as light source, is proving an invaluable provides technique that ultra-spatially resolved spectroscopic information and a higher signal-to-noise ratio (SNR) on minute quantities of microscopic structure within a given sample. This facility has been widely used in various biological studies including investigation of cell membranes, proteins and nucleic acids, as well as tissues engineering.

5 tissue liver samples were obtained from biopsy of liver tumor (from Macky Memorial Hospital) specimens. FTIR spectra of tissue specimens, were collected by using SR-FTIR (Thermo Nicolet, Magna-IR spectrometer) on BL14A, NSRRC. Every 5µm step takes one spectrum and scans at the same thickness to ensure individual discrepancy on the sample.

Our result demonstrated that Amide I peak in normal region exhibits a red shift compared to that in cancerous region. In addition, a small vibrational peak at 1150 cm⁻¹ only appears in the spectra of the normal area. Since the spectra of 5 liver tissues show almost the same absorption peaks (energy and intensity), indicating that the SRFTIR shows high reliability in this study. As the result, these information prove that FTIR might act as a diagnostic tool to distinguish normal and cancerous human tissue which provides as an index of disease progression,

Figure 1. IR spectra in the range from 1800-1000 of human normal and cancerous tissues. Peak shift between normal and cancerous regions can be seen and a small vibrational peak at 1150 cm-1 only appears in the spectra of the normal area.

Cancerous tissue

Figure 3. The functional group map of (a) normal, and (b) cancerous live section of characteristic bands of PO_{2-} and amide I.