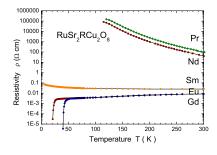

## The Oxygen K-Edge XANES of $RuSr_2RCu_2O_8$ (R = Rare Earths)

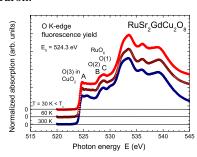
## Bin-Chang Chang (張炳章)<sup>1</sup>, Huan-Chiu Ku (古煥球)<sup>1</sup>, and Hong-Ji Lin (林宏基)<sup>2</sup>


## <sup>1</sup>Department of Physics, National Tsing Hua University, Hsinchu, Taiwan <sup>2</sup>National Synchrotron Radiation Research Center, Hsinchu, Taiwan

High temperature superconductivity with anomalous magnetic properties was reported in the weak-ferromagnetic Ru-1212 system RuSr<sub>2</sub>RCu<sub>2</sub>O<sub>8</sub> (R = Pr, Nd, Sm, Eu, Gd). [1] For the prototype compound RuSr<sub>2</sub>GdCu<sub>2</sub>O<sub>8</sub>, the occurrence of superconductivity with transition temperature  $T_c$  onset as high as 60 K is related to the quasi-two-dimensional CuO<sub>2</sub> bi-layers separated by a rare earth in the Ru-1212 structure. The weak-ferromagnetic order with a Curie temperature  $T_{\text{Curie}} \sim 130$  K above  $T_c$  is due to ordered Ru moments in the RuO<sub>6</sub> octahedron through a strong Ru/4d–O/2p hybridization. Here we report the oxygen K-edge x-ray absorption near edge structure (XANES) spectra of metal-insulator transition in the oxygen-annealed RuSr<sub>2</sub>RCu<sub>2</sub>O<sub>8</sub> system (R = rare earths).

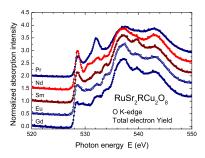


**Figure 1.** The structure of RuSr<sub>2</sub>RCu<sub>2</sub>O<sub>8</sub> (rare earths).


The resistivity of  $RuSr_2RCu_2O_8$  in Fig. 2 shows the metallic behavior for Eu and Gd, and insulator behavior for Pr and Nd. The metal-insulator transition boundary was near R=Sm.



**Figure 2.** The resistivity of  $RuSr_2RCu_2O_8$  (rare earths).


The normalized O K-edge (1s-2p dipole transition) XANES at 30 K, 60 K, and 300 K for  $RuSr_2GdCu_2O_8$  were shown in Fig. 3. The pre-edge peak indicates inner 1s electron transfer to 2p hole near oxygen atom. Three peaks at pre-edge of XANES were at 524.7 eV, 528.1 eV, and 528.75 eV, the lowest absorption edge 524.7 eV was identified O(1) in  $CuO_2$  plane. The two peaks at 528.1 eV and 528.75 eV are O(2) and O(3) around  $RuO_6$ 

octahrdron.



**Figure 3.** The oxygen K-edge XANES at 30 K, 60 K, and 300 K for  $RuSr_2GdCu_2O_8$ .

The normalized O K-edge (1s-2p dipole transition) XANES at 300 K for RuSr<sub>2</sub>RCu<sub>2</sub>O<sub>8</sub> (R = rare earths) were shown in Fig. 4. The XANES of RuSr<sub>2</sub>PrCu<sub>2</sub>O<sub>8</sub> is different from others of RuSr<sub>2</sub>RCu<sub>2</sub>O<sub>8</sub>. The local environment of RuSr<sub>2</sub>PrCu<sub>2</sub>O<sub>8</sub> was different from other sample. A larger absorption peak of RuSr<sub>2</sub>SmCu<sub>2</sub>O<sub>8</sub> near 524 eV indicates that structure is more distorted than structure of RuSr<sub>2</sub>GdCu<sub>2</sub>O<sub>8</sub>.



**Figure 4.** The oxygen K-edge XANES for  $RuSr_2RCu_2O_8$  (R = rare earths) at 300 K.

## REFERENCES

1. C. Y. Yang, B. C. Chang, H. C. Ku, and Y. Y. Hsu, Phys. Rev. B **72**, 174508 (2005).