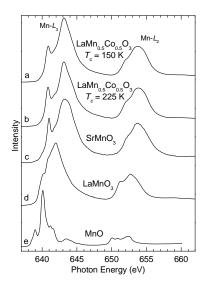

X-ray Absorption Study of Co and Mn Valence State in LaMn_{0.5}Co_{0.5}O₃

Tobias Burnus¹, Zhiwei Hu¹, Hui-Huang Hsieh (謝輝煌)², P. A. Joy³, Hong-Ji Lin (林宏基)⁴, Chien-Te Chen (陳建德)⁴, and Liu-Hao Tjeng¹

¹II Physical Institute, University of Cologne, Cologne, Germany
²Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan
³Physical and Materials Chemistry Division, National Chemical Laboratory, Pune, India
⁴National Synchrotron Radiation Research Center, Hsinchu, Taiwan

Substitution of the magnetic Mn ions by Co yields ferromagnetism in the $LaMn_{1-x}Co_xO_3$ series. The Curie temperature reaches a maximum for x=0.5 ($T_C=220-240~K$) [1,2]. Explaining the appearance of ferromagnetism in the manganites by Co substitution is, however, not a trivial issue. Joy *et al.* have synthesized two different single phases of $LaMn_{0.5}Co_{0.5}O_3$ and inferred from a combination of magnetic susceptibility and x-ray photoelectron spectroscopy measurements that the phase with the higher T_C contains high-spin Mn^{3+} and low-spin Co^{3+} ions, while the lower T_C phase has Co^{2+} and Mn^{4+} .

Very recently, however, long-range charge ordering has been observed in neutron diffraction experiments on the high- T_C phase, pointing towards the Co²⁺-Mn⁴⁺ scenario [3,4].


Figure 1. The Co- $L_{2,3}$ XAS spectra of LaMn_{0.5}Co_{0.5}O₃ with $T_C = 150$ K and 225 K together with LaCoO₃ and Co as references.

To settle the question of Mn and Co valence we have studied the Co- $L_{2,3}$ and Mn- $L_{2,3}$ XAS spectrum of LaMn_{0.5}Co_{0.5}O₃. Fig. 1 shows the Co- $L_{2,3}$ XAS spectra of both low- T_C and high- T_C LaMn_{0.5}Co_{0.5}O₃ and LaCoO₃ as a trivalent reference and CoO as a divalent reference.

In Fig. 1 we see a shift of the ``center of gravity" of the L_3 white line to higher photon energies by approximately 1.5 eV in going from CoO to LaCoO₃. The energy position and the spectral shape of the high- T_C -phase of LaMn_{0.5}Co_{0.5}O₃ is very similar to that of CoO,

indicating an essentially divalent state of the Co ions. From the high- T_C to the low- T_C phase, the spectral weight at the main peak of LaCoO₃ (about 780 eV) is increased. This is natural to associate this increase with the presence of Co³⁺ species.

Fig. 2 shows the Mn- $L_{2,3}$ XAS spectra of both low- T_C and high- T_C LaMn_{0.5}Co_{0.5}O₃ together with MnO, LaMnO₃ and SrMnO₃ as a divalent, a trivalent and tetravalent Mn references, respectively. Again we see a gradual shift of the ``center of gravity" of the L₃ white line to higher energies from MnO to LaMnO₃ and further to SrMnO₃, reflecting the increase of the Mn valence state from 2+ via 3+ to 4+. The result is agreement with above observation of the Co²⁺ valence in the Co- $L_{2,3}$ XAS spectra, i.e. fulfilling the charge balance requirement.

Figure 2. The Mn- $L_{2,3}$ XAS spectra of LaMn_{0.5}Co_{0.5}O₃ with $T_C = 150$ K and 225 K together with MnO, LaMnO₃ and SrMnO₃ as references.

We acknowledge the NSRRC staff for providing us with an extremely stable beam.

¹ R. I. Dass and J. B. Goodenough, Phys. Rev. B **67**, 014401 (2003).

² P. A. Joy *et al.*, Phys. Rev. B **62**, 8608 (2000).

³ C. L. Bull *et al.*, J. Phys.: Condens. Matter **15**, 4927 (2003).

⁴ I. O. Troyanchuk *et al.*, J. Exp. Theo. Phys. **99**, 363 (2004).