Home / Research Highlights

Bioactive scaffolds; Multiple hydrogen bonds; Self-assembly; Supramolecular chemistry; Tissue engineering
Self-assembled Supramolecular Polymers with Tailorable Properties that Enhance Cell attachment and Proliferation
C.-C. Cheng*, D.-J. Lee, and J.-K. Chen
Self-assembled supramolecular scaffolds, a combination of noncovalent interactions within a biocompatible polymer substrate, can be used for efficient construction of highly-controlled self-organizing hierarchical structures; these newly-developed biomaterials exhibit excellent mechanical properties, tunable surface hydrophilicity, low cytotoxicity and high biodegradability, making them highly attractive for tissue engineering and regenerative medicine applications. Herein, we demonstrate a novel supramolecular poly(ε-caprolactone) (PCL) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties, which undergoes spontaneous self-assembly to form supramolecular polymer networks. Inclusion of various U-DPy contents enhanced the mechanical strength and viscosities of the resulting materials by up to two orders of magnitude compared to control PCL. Surface wettability and morphological studies confirmed physically-crosslinked films can be readily tailored to provide the desired surface properties. Cell viability assays indicated the excellent in vitro biocompatibility of U-DPy-functionalized substrates and indicate the potential of these materials for various biomedical applications. More importantly, mouse fibroblast NIH/3T3 cells cultured on these substrates displayed a more elongated cell morphology and had substantially higher cell densities than cells seeded on control PCL substrate, which indicates that introduction of U-DPy moieties into polymer matrixes could be used to create tissue culture surfaces that enhance cell attachment and proliferation. This new system is suggested as a potential route towards the practical realization of next-generation tissue-engineering scaffolds.